Бинарное отношение

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Бинарным отношением (англ. binary relation) [math]R[/math] из множества [math]A[/math] в множество [math]B[/math] называется подмножество прямого произведения [math]A[/math] и [math]B[/math] и обозначается: [math]R \subset A \times B[/math].


Часто используют инфиксную форму записи: [math]aRb, \ \langle x, y \rangle\in R[/math].

Если отношение определено на множестве [math]A[/math], то возможно следующее определение:

Определение:
Бинарным (или двуместным) отношением [math]R[/math] на множестве [math]A[/math] называется множество упорядоченных пар элементов этого множества.

Примерами множеств с введёнными на них бинарными отношениями являются графы и частично упорядоченные множества.

Свойства отношений

Для [math]R \subset A^2[/math] определены свойства:

Виды отношений

Выделяются следующие виды отношений:

  • квазипорядка (англ. quasiorder) — рефлексивное транзитивное;
  • эквивалентности (англ. equivalence) — рефлексивное симметричное транзитивное;
  • частичного порядка (англ. partial order) — рефлексивное антисимметричное транзитивное;
  • строгого порядка (англ. strict order) — антирефлексивное антисимметричное транзитивное;
  • линейного порядка (англ. total order) — полное антисимметричное транзитивное;
  • доминирования (англ. dominance) — антирефлексивное антисимметричное.

Примеры отношений

См. также

Источники информации