Теорема о существовании простого цикла в случае существования цикла
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Лемма: |
Наличие двух различных рёберно простых путей между какими-либо двумя вершинами неориентированного графа равносильно наличию цикла в этом графе. |
Доказательство: |
Предположим, что в графе существует два различных рёберно простых пути между вершинами и . Пусть это будут пути и . Пусть их наибольший общий префикс заканчивается в вершине . Заметим, что , т.к. пути различны. Рассмотрим суффиксы путей и : и соответственно. Найдём первую совпадающую вершину в и , не равную . Осталось заметить, что замкнутый путь , полученный объединением части пути вместе с частью цепи , является циклическим путем. Действительно, в путях и двух одинаковых рёбер подряд не бывает, т.к. это рёберно простые пути, а рёбра, смежные с и , не совпадают по построению. Циклический путь является представителем некоторого цикла в графе .Предположим, что в графе существует цикл и пусть циклический путь — его представитель. Найдём первую точку пересечения с самим собой. Такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь : он простой, т. к. если это неверно и существует вершина , то в вершина повторяется раньше, чем . Теперь элементарно взяв две вершины и легко заметить, что существует два различных рёберно непересекающихся пути между ними: и . |
Теорема: |
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл. |
Доказательство: |
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число [1]). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
- Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
Утверждение (неверное): |
Если две вершины графа лежат на цикле, то они лежат на простом цикле. |
В общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост. |