Двойственное пространство
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Введение
Введем понятия двойственного, к пространству
, пространства. Для того чтобы избежать рассмотрения отдельных случаев, работаем в однородных координатах. Пока в конспекте есть недочеты.Определение
Определение: |
Двойственным пространством называется пространство линейных функционалов на линейном пространстве | .
Любой линейный функционал
можно представить как . Это значит, каждому такому функционалу будет соответствовать точка в двойственном пространстве с однородными координатами . Таким образом, мы можем определить дуальное преобразование ( ) для прямой, как точку в двойственном пространстве.Утверждение: |
Дуальное преобразование от точки в исходном пространстве дает прямую в двойственном. |
Расмотрим все прямые из , такие что . Более формально, пусть . Для каждой можно выразить : , сделаем замену и получим, что все точки удовлетворяют уравнению прямой. |
Теорема: |
Пусть - прямая, а - точка, тогда:
|
Доказательство: |
1. Пусть 2. Пусть . Возьмем две точки и такие, что . Тогда . Воспользуемся леммой о предикате проверки расположения прямых. В двойственном пространстве точкам будут соответствовать прямые с соответствующими коэффициентами. Так как этот предикат равен нулю, все три прямые пройдут через одну точку - , в силу подстановки коэффициентов. Обратное следствие верно в силу того, что второе сопряженное пространство есть исходное. и . Тогда, по лемме, будет выше, чем . Обратное аналогично. |
Утверждение: |
Отрезок переходит в такое множество: ,
где - прямая на которой лежат и , а - . |
Условие означает, что прямая лежит выше точки пересечения и . Зафиксируем и . Рассмотрим прямую , пересекающую . Так как лежит выше точки пересечения и , то , Так как лежит ниже точки пересечения и , то . |
Прикладной смысл двойственного пространства
Двойственной пространство позволяет нам посмотреть на некоторые задачи с другой точки зрения. Ниже приведен список задач:
- Построение пересечения полуплоскостей с помощью построения выпуклой оболочки в двойственном пространстве
- Set of points to Arrangements of Lines // TODO