RSumCi
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Задача: |
Дано | работ и станков, причем для каждого станка длительность выполнения на нем -й работы составляет . Необходимо минимизировать сумму времени выполнения работ.
Алгоритм
Описание алгоритма
Рассмотрим произвольное допустимое расписание для этой задачи. Рассмотрим какой-то станок
, пусть на нем выполняется работ. Тогда вклад этого станка в целевую функцию (не теряя общности, пронумеруем работы на этом станке от до ) рассчитывается как:
Заметим, что в каждом допустимом расписании перед каждой работой окажется коэффициент
, означающий, что соответствующая работа выпллняется -й с конца. Понятно, что в различных расписаниях может принимать значения от до .Сведем задачу к назначению каждой работы поиска максимального потока минимальной стоимости. Поместим в левую долю графа работы, в правую долю — пары из станка и коэффициента и проведем соответствующие ребра пропускной способности и стоимости , соответствующие вкладу работы в целевую функцию, если она окажется в позиции с конца на станке . Проведем из стока в левую долю ребра стоимости и пропускной способности , из правой доли в сток — также ребра стоимости и пропускной способности . Максимальный поток минимальной стоймости в построенной сети будет ответом на исходную задачу.
позиции с конца на станке с помощью алгоритмаУтверждение: |
Eсли ребро насыщено потоком, то работа в оптимальном расписании должна стоять на станке в позиции с конца. |
|
Время выполнения
Время выполнения алгоритма поиска максимального потока минимальной стоймости равно
. Количество вершин в получаемой сети равно . Количество ребер в сети равно . Следовательно, ассимптотика алгоритма равна .