Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Язык исчисления высказываний

Определения

Определение:
Языком исчисления высказываний мы назовем язык [math]L[/math], порождаемый следующей грамматикой со стартовым нетерминалом <выражение>:
  • <выражение> ::= <импликация>
  • <импликация> ::= <дизъюнкция> [math]|[/math] <дизъюнкция> [math]\rightarrow[/math] <импликация>
  • <дизъюнкция> ::= <конъюнкция> [math]|[/math] <дизъюнкция> [math]\vee[/math] <конъюнкция>
  • <конъюнкция> ::= <терм> [math]|[/math] <конъюнкция> [math]\&[/math] <терм>
  • <терм> ::= <пропозициональная переменная> [math]|[/math] (<выражение>) [math]|[/math] [math]\neg[/math] <терм>


Определение:
<пропозициональная переменная> формально не определяется. Договоримся, что это - буква латинского алфавита (возможно, с нижним индексом).

Расстановка скобок

Так построенная грамматика предписывает определенный способ расстановки опущенных скобок, при этом скобки у конъюнкции и дизъюнкции расставляются слева направо, а у импликации --- справа налево (это соответствует традиционному чтению), так что выражение [math]A \rightarrow B\&C\&D \rightarrow E[/math] следует понимать как [math]A \rightarrow (((B\&C)\&D) \rightarrow E)[/math]. Все выражения, которые отличаются только наличием дополнительных незначащих скобок (не изменяющих порядок операций), мы будем считать одинаковыми.

Иногда полезно ограничивать свободу расстановки скобок:

  • <выражение> ::= <импликация>
  • <импликация> ::= <дизъюнкция> [math]|[/math] (<дизъюнкция> [math]\rightarrow[/math] <импликация>)
  • <дизъюнкция> ::= <конъюнкция> [math]|[/math] (<дизъюнкция> [math]\vee[/math] <конъюнкция>)
  • <конъюнкция> ::= <терм> [math]|[/math] (<конъюнкция> [math]\&[/math] <терм>)
  • <терм> ::= <пропозициональная переменная> [math]|[/math] (<выражение>) [math]|[/math] [math]\neg[/math] <терм>


Определение:
Высказывание - любая формула, порожденная данными грамматиками.