Вопросы к экзамену по математическому анализу за 3 семестр

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.
  1. Полукольцо и алгебра множеств (примеры).
  2. Мера на полукольце множеств и ее основные свойства.
  3. Внешняя мера, порожденная мерой на полукольце.
  4. Понятие о [math]\mu^*[/math]-измеримых множествах. Доказательство основной теоремы.
  5. Распространение меры с полукольца на сигма-алгебру по Каратеодори. Доказательство теоремы.
  6. Теорема о повторном применении процесса Каратеодори.
  7. Критерий [math]\mu^*[/math]-измеримости.
  8. Объем многомерного параллелепипеда и его основные свойства.
  9. Объем, как мера на полукольце ячеек.
  10. Некоторые классы измеримых по Лебегу множеств (счетные, открытые, замкнутые).
  11. Теорема о внешней мере в R^n.
  12. Структура измеримого по Лебегу множества.
  13. Определение измеримых функций, теорема о множествах Лебега.
  14. Арифметика измеримых функций.
  15. Измеримость поточечного предела измеримых функций.
  16. Эквивалентные функции и сходимость почти всюду.
  17. Предел по мере и его единственность.
  18. Теорема Лебега о связи сходимости п.в. и по мере.
  19. Теорема Рисса.
  20. Теорема Егорова.
  21. Теоремы Лузина (без док-ва) и Фреше.
  22. Суммы Лебега-Дарбу и их свойства, определение интеграла Лебега, совпадение интеграла Римана с интегралом Лебега.
  23. Интегрируемость ограниченной, измеримой функции.
  24. Счетная аддитивность интеграла.
  25. Абсолютная непрерывность интеграла.
  26. Арифметические свойства интеграла Лебега.
  27. Теорема Лебега о предельном переходе под знаком интеграла.
  28. Определение интеграла от суммируемой функции.
  29. Сигма-аддитивность интеграла неотрицательных функций.
  30. Арифметические свойства интеграла неотрицательных функций.
  31. О распространении основных свойств интеграла Лебега на суммируемые функции произвольного знака.
  32. Теорема Лебега о мажорируемой сходимости.
  33. Теорема Б.Леви и следствие о ряде из интегралов.
  34. Теорема Фату.
  35. Неравенства Гельдера и Минковского.
  36. Пространства, [math]L_p[/math] полнота.
  37. Всюду плотность множества С в пространствах [math]L_p[/math].
  38. Мера цилиндра.
  39. Мера подграфика.
  40. Вычисление меры множества посредством его сечений.
  41. Теорема Фубини.