Точки Лебега суммируемой функции
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
TODO: Этой темы, видимо, не будет на экзамене, так что забить на неё
E \in \mathbb R^n, f — суммируемая функция на E, \int\limits_E |f| d \lambda_n < + \infty.
По определению суммируемой функции мы можем подобрать g — ограниченную и суммируемую на E таким образом, что:
\int\limits_E |f - g| d \lambda_n < \varepsilon
|g(x)| \le M на E.
По теореме Лузина имея \varepsilon мы можем подобрать неперывную на \mathbb R^n функцию \varphi, которая ограничена |\varphi(x)| \le M и \lambda_n E(g \ne \varphi) < \frac{\varepsilon}{M}.
Тогда \int\limits_E |f - \varphi| \le \int\limits_E |f - g| + \int\limits_E |g - \varphi| \le \varepsilon + \int\limits_E |g - \varphi|
\int\limits_E |g - \varphi| = \int\limits_{E(\varphi \ne g)} |g - \varphi| \le \int\limits_{E(\varphi \ne g)} (|g| + |\varphi|) \le