Теорема о существовании порога для монотонных свойств
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Рассмотрим биномиальную модель случайного графа $G(n,p)$.
Определение: |
Подмножество $\mathcal{A}$ всех графов на $n$ вершинах называется свойством (англ. graph property). |
Определение: |
Свойство называется нетривиальным (англ. non-trivial property), если существуют графы, как удовлетворяющие ему, так и нет. |
Определение: |
Свойство $\mathcal{A}$ называется монотонным (англ. monotone property), если для любой пары $G_1,G_2\in G(n,p),\,E(G_1)\subset E(G_2)$ выполнено следствие: $G_1\in \mathcal{A}\Rightarrow G_2\in\mathcal{A}$ |
Определение: |
Функция $p_0(n)$ называется пороговой для монотонного свойства $\mathcal{A}$ (англ. threshold), если для любой функции вероятности $p(n)$ выполнено:
|
Мы уже знакомы с некоторыми пороговыми функциями.
Лемма (о монотонности вероятности): |
Для любого монотонного свойства $\mathcal{A}$ верно следствие: $p_2\geqslant p_1\Rightarrow P(G(n,p_2)\in \mathcal{A})\geqslant P(G(n,p_1)\in \mathcal{A})$ |
Доказательство: |
Пусть $p=\dfrac{p_2-p_1}{1-p_1}\in[0,1]$. Выберем случайно граф $G_1$ из $G(n,p_1)$, затем $G$ из $G(n,p)$ и рассмотрим $G_1\cup G$. В нем с вероятностью $(1-p)(1-p_1)=(1-p_2)$ не будет фиксированного ребра, как и в графе $G_2$. Мы смогли представить выбор $G_2$ как объединение, один из которых — выбор графа $G(n,p_1)$, значит $P(G(n,p_2))\geqslant P(G(n,p_1))$ |
Теорема (Bollob́as-Thomason): |
Любое нетривиальное монотонное свойство имеет пороговую функцию. |
Доказательство: |
Сначала найдем эту пороговую функцию. Зафиксируем $n$.
Пусть $\dfrac{p(n)}{p_0(n)}\xrightarrow[n \to \infty]{} \infty$. Докажем, что $P(G(n,p(n))\in\mathcal{A})\xrightarrow[n \to \infty]{} 1$.
Оказывается, что $P(G(n,1-(1-p_0(n))^m)\in\mathcal{A})=P(H\in\mathcal{A})$.
|