Секвенциальное и интуиционистское исчисление

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

<< >>

Секвенциальное исчисление высказываний

Исчисления гильбертовского типа, используемые здесь, не единственные. Как пример, рассмотрим секвенциальное исчисление. В данном разделе мы будем использовать символ [math]\supset[/math] вместо символа [math]\rightarrow[/math].


Определение:
Пусть [math]\Gamma[/math] и [math]\Delta[/math] --- некоторые формулы исчисления высказываний. Тогда секвенция --- это запись вида [math]\Gamma \rightarrow \Delta[/math]. Часть секвенции [math]\Gamma[/math] называется антецедентом, а [math]\Delta[/math] --- сукцедентом.


Неформальный смысл секвенции: секвенция [math]\gamma_1,...\gamma_n \rightarrow \delta_1,...\delta_n[/math] означает, что из конъюнкции всех аргументов слева следует дизъюнкция всех аргументов справа. Пустой список слева соответствует истине, пустой список справа — лжи. Соответственно, доказуемость секвенции [math]\rightarrow[/math] означает противоречие.

Формальная система, основанная на секвенциальном исчислении, имеет одну схему аксиом: [math](\psi) \rightarrow (\psi)[/math], и множество правил вывода.

  • Правила вывода и аксиомы смотри в книге Г. Такеути Теория доказательств, М, <<Мир>>, 1978, стр. 15-17.


Теорема:
Теорема об устранении сечений. Любое доказательство, использующее правило сечения, может быть перестроено в доказательство, не использующее правило сечения.
Доказательство:
[math]\triangleright[/math]
Без доказательства.
[math]\triangleleft[/math]

Интуиционистское исчисление высказываний может быть получено из классического путем введения ограничения на количество формул в суккцеденте: их должно быть не более одной.

Интуиционистская логика

Интуиционистское исчисление высказываний получается из классического заменой схемы аксиом 10 в исчислении высказываний (схемы аксиом снятия двойного отрицания) на следующую: [math](\neg (\psi)) \rightarrow (\psi) \rightarrow (\phi)[/math]

Конструкцию примера для доказательства необщезначимости закона исключенного третьего и конструкцию моделей Крипке см. Н.К.Шень, А.Верещагин, Лекции по математической логике и теории алгоритмов, часть 2. Языки и Исчисления. Глава 2, Интуиционистская пропозициональная логика, стр. 74-77.

http://www.mccme.ru/free-books/shen/shen-logic-part2.pdf