Вероятностное пространство, элементарный исход, событие
Версия от 10:38, 1 сентября 2022; 172.28.19.178 (обсуждение)
Содержание
Основные определения
Определение: |
Дискретным вероятностным пространством (англ. discrete probability space) называется пара из некоторого (не более, чем счетного) множества | и функции ( называется множеством элементарных исходов (англ. sample space), — элементарным исходом (англ. elementary outcome), такая, что .
Определение: |
называют дискретной вероятностной мерой (англ. discrete probability measure), или дискретной плотностью вероятности (англ. discrete probability density). |
— вероятность элементарного исхода.
Определение: |
Множество | называется событием (англ. event).
, то есть вероятность события равна сумме вероятностей входящих в него элементарных исходов.
Определение: |
Прямым произведением вероятностных пространств (англ. direct product of probability spaces) | и называется такое вероятностное пространство , что
Другими словами, — множество всех пар элементарных исходов из и (т.е. декартово произведение этих множеств).
Примеры вероятностных пространств
- Конечные вероятностные пространства
- Честная монета
Множество исходов , где — выпадает орел, — выпадает решка.
Рассмотрим все возможные события и их вероятности для этого пространства.
: . То есть вероятность того, что не выпадет ничего, равна нулю.
: . Вероятность того, что выпадет орел, равна одной второй.
: . Вероятность того, что выпадет решка, равна одной второй.
: . Действительно, вероятность того, что выпадет орел или решка, равна единице. - Нечестная монета
Множество исходов здесь такое же, как и в предыдущем пространстве, однако , где . - Игральная кость
Множество исходов . Рассмотрим некоторые события этого пространства.
: Вероятность выпадения одного из трех чисел из множества равна одной второй.
: Числа или выпадут с вероятностью одна треть. - Колода карт
. Здесь — масть, — достоинство карты.
Вероятность элементарного исхода этого пространства
- Честная монета
- Бесконечное вероятностное пространство
Пусть задано множество следующих элементарных исходов: выпадение орла на -ом подбрасывании честной монеты в первый раз.
Тогда вероятность исхода с номером равна:
Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным Найдем сумму этой прогрессии:
Так как сумма всех элементарных исходов равна то это множество является вероятностным пространством.
См. также
Источники информации
- Википедия — Вероятностное пространство
- MachineLearning.ru — Дискретное вероятностное пространство
- Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.