Рассмотрим язык [math]L \in \mathrm{\Pi_2}[/math]: [math] \exists p \in poly, \phi \in \mathrm{\widetilde{P}}, \forall x \in L \Leftrightarrow \forall y \ \exists z : |y|,|z| \le p(|x|), \phi(x, y, z) = 1[/math].
Для фиксированного [math]x[/math] [math]\phi[/math] можно рассматривать как формулу с [math]n[/math] битовыми переменными (так как мы знаем, что [math]\phi \in \mathrm{\widetilde{P}}[/math], а [math]\mathrm{P} \subset \mathrm{P}/poly[/math]), где [math]n[/math] — полином от длины входа [math]x[/math] (из-за ограничений накладываемых по определению класса [math]\mathrm{\Pi_2}[/math] на [math]|y|, |z|)[/math].
Для заданных [math]x[/math] и [math]y[/math] научимся находить такой [math]z[/math], что [math]\phi(x,y,z)=1[/math], если это возможно. Подставим значения [math]x[/math] и [math]y[/math] в формулу [math]\phi[/math]. Теперь [math]\phi[/math] зависит только от [math]z[/math]: [math]\phi_{xy}(z)[/math].
Из предыдущей леммы мы установили существования семейство схем полиномиального размера [math]C_1, \ldots, C_n, \ldots [/math] Запустим схему [math]C_{p(|x|)}[/math] на [math]\phi_{xy}[/math]. Эта схема вернет нам такое значение [math]z[/math], что [math]\phi(x,y,z)=1[/math], если [math]\phi(x,y,z) [/math] удовлетворима для заданных [math]x[/math] и [math]y[/math], или же последовательность нулей.
Тогда определение языка [math]L[/math] можно переписать: [math]L = \{x \bigm| \forall y \ \phi(x, y, C_{p(|x|)}(\phi_{xy})) = 1\}[/math].
Рассмотрим язык [math]L_1 = \{x\bigm|\exists G \ \forall y \ \phi(x, y, G(\phi_{xy})) = 1\}[/math].
Покажем, что [math]L=L_1[/math]:
- [math] L \subset L_1[/math]
Очевидно. Можно за [math]G[/math] взять [math]C_{p(|x|)}[/math].
- [math]L_1 \subset L[/math]
Мы докажем это утверждение, если покажем, что если какое-то слово не принадлежит [math]L[/math], то оно не принадлежит и [math]L_1[/math].
Если [math]\exists y \ \forall z \ \phi(x,y,z)=0 [/math], тогда [math]\nexists G \ \forall y \ \phi(x, y, G(\phi_{xy}))=1[/math].
Таким образом [math]L =\{x\bigm|\exists G, |G| \lt p(|x|) \ \forall y, |y|\lt p(|x|) \ \phi(x, y, G(\phi_{xy})) = 1\}[/math]. Следовательно, [math]L \in \Sigma_2[/math]. Значит, [math]\mathrm{\Pi_2} \subset \mathrm{\Sigma_2} [/math].
Докажем теперь, что [math]\mathrm{\Sigma_2} \subset \mathrm{\Pi_2} [/math].
Рассмотрим язык [math]L \in \mathrm{\Sigma_2}[/math]: [math]L \in \mathrm{\Sigma_2} \Rightarrow \overline{L} \in \mathrm{\Pi_2} \Rightarrow \overline{L} \in \mathrm{\Sigma_2} \Rightarrow L \in \mathrm{\Pi_2}[/math]. Получается, что [math]\mathrm{\Sigma_2} \subset \mathrm{\Pi_2} [/math].
Итого, [math]\mathrm{\Sigma_2} = \mathrm{\Pi_2} [/math]. |