Примеры матроидов: графовый матроид
Версия от 01:10, 22 мая 2011; 192.168.0.2 (обсуждение) (Новая страница: «{{Определение |definition= Пусть <tex>G = (V, E)</tex> - неориентированный граф. Тогда <tex>M = (E, I_G)</tex>, где <tex…»)
| Определение: |
| Пусть - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют матричным матроидом. |
| Лемма: |
Матричный матроид является матроидом. |
| Доказательство: |
|
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в . 2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в . 3) |