Равномерная сходимость несобственных интегралов, зависящих от параметра

Материал из Викиконспекты
Версия от 07:34, 4 июня 2011; Dgerasimov (обсуждение | вклад) (до второго пункта.)
Перейти к: навигация, поиск

<wikitex> $ z = f(x, y), \quad x \ge a, y \in [c; d] $ (можно нарисовать тут полоску).

Считаем, что f непрерывна в этой полосе.

$ F(y) = \int\limits_a^{\infty} f(x, y) dx $ - является несобственным интегралом, зависящим от параметра y.

Если считать, что для некоторого $ y_0 \in [c; d] $, $ \int\limits_a^{\infty} f(x, y_0) dx $ - сходится, то $ \int\limits_A^{\infty} f(x, y_0) dx \xrightarrow[A \to + \infty]{} 0 $, или $ \forall \varepsilon > 0 \exists A_0(y_0): \forall A > A_0(y_0) \Rightarrow |\int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $

Для исключения зависимости $ A_0 $ от $ y_0 $, вводится понятие для равномерной сходимости.

$ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $.

Прослеживается аналогия с функциональными рядами:

$ \forall \varepsilon > 0 : \exists N : \forall n > N , \forall x \in E : | \sum\limits_{m = n}^{\infty} f_m(x) | < \varepsilon $

Сопоставляем два определения, видим $ n \leftrightarrow x $, $ x \leftrightarrow y $. Аналогия важна в том смысле, что доказательство свойств интеграла копирует доказательство соответствующих свойств функциональных рядов.

Признак Вейерштрасса равномерной сходимости несобственных интегралов

Установим его.

Пусть $ |f(x, y) | \le g(x) \qquad \forall x \ge 0, \forall y \in [c; d] $.

Пусть $ \int\limits_a^{\infty} g(x) dx $ - сходится. Тогда соответствующий интеграл равномерно сходится на $ [c; d] $.

$ B > A: \left| \int\limits_A^B f(x, y) dx \right| \le \int\limits_A^B |f(x, y)| dx \le \int\limits_A^B g(x) dx $.

Интеграл g сходится, следовательно, по критерию Коши сходимости интегралов, $ \int\limits_A^B g(x) dx \xrightarrow[A, B \to + \infty]{} 0 \Rightarrow \int\limits_A^B f(x, y) dx \xrightarrow[A, B \to + \infty]{} 0 $, следовательно, для любого $ y $ - это сходящиеся интегралы. Это позволяет в неравенстве перейти к пределу при B, стремящемся к бесконечности:

$ \left| \int\limits_A^{\infty} f(x, y) dx \right| \le \int\limits_A^B g(x) dx $

$ \forall \varepsilon > 0: \exists A_0: \forall A > A_0 \Rightarrow \int\limits_A^{\infty} g(x) dx < \varepsilon $, что возможно, так как $ \int g(x) dx $ - сходится.

Сопоставляя $ \left| \int\limits_A^{\infty} f(x, y) dx \right| < \varepsilon \ \forall y \int [c; d] $, получаем что это и есть равномерная сходимость.

Базируясь на условии равномерной сходимости, те же три свойства что и для определенных интегралов.

Считаем далее, что интеграл равномерно сходится на $ [c; d] $.

Пункт 1

$ F(y) = \int\limits_a^{\infty} f(x, y) dx \stackrel{?}{\Rightarrow} \Delta f(y) \xrightarrow[\Delta y \to 0]{} 0 $ (непр. F(y)).

Доказательство ведем по аналогии с рядами.

В силу равномерной сходимостри:

$ \forall \varepsilon > 0: \exists A_0: \forall A \ge A_0: \left| \int\limits_A^{\infty} f(x, y) dx \right| < \varepsilon, \forall y \in [c; d] $. $A = A_0$ - частный случай.

$ | F(y + \Delta y) - F(y) | = \left| \int\limits_a^{\infty} f(x, y + \Delta y) dx - \int\limits_a^{\infty} f(x, y) dx \right| $

По аддитивности интеграла:

$ |F(y + \Delta y) - F(y)| \le \\ \le \left| \int\limits_a^{A_0} f(x, y + \Delta y) dx - \int\limits_a^{A_0} f(x, y) dx \right| + \left| \int\limits_{A_0}^{\infty} f(x, y + \Delta y) dx \right| + \left| \int\limits_{A_0}^{\infty} f(x, y) dx \right| $ - последние два слагаемых $ \le \varepsilon $ по выбору $ A_0 $.

$ |\Delta F(y) | \le \left| \int\limits_a^{A_0} f(x, y + \Delta y) dx - \int\limits_a^{A_0} f(x, y) dx \right| + 2 \varepsilon $.

$ \int\limits_a^{A_0} f(x, y) dx $ - определенный интеграл, зависящий от параметра - его величина неперывно зависит от $ y $.

Для нашего $ \varepsilon: \exists \delta > 0: | \Delta y | < \delta $, следовательно, $ \left| \int\limits_a^{A_0} f(x, y + \Delta y) dx - \int\limits_a^{A_0} f(x, y) dx \right| $ окажется меньше $ \varepsilon $ по непрерывности.

$ | \Delta y | < \delta \Rightarrow | \Delta F(y) | < 3 \varepsilon $, то есть доказали непрерывность по произвольности $ \varepsilon $.

</wikitex>