Алгоритм Ху-Таккера
Алгоритм Ху–Таккера (англ. Hu–Tucker Algorithm) — алгоритм построения оптимального алфавитного дерева.
Определение: |
Алфавитное дерево (англ. Alphabetical tree) — дерево в котором при просмотре листьев слева направо символы идут в алфавитном порядке, и код последующего лексикографически больше предыдущего. |
Определение: |
Пусть
| — алфавит из различных символов, — соответствующий ему набор весов. Тогда алгоритм выбора набора бинарных кодов , такой, что:
Содержание
Алгоритм
Алгоритм Ху–Таккера
- Начало.
- Шаг 0. Введем следующие понятия.
- Две вершины называются совместимой парой (англ. compatible pair), если они соседние или если между ними нет вершин алфавита.
- Две вершины называются минимальной парой, когда их суммарный вес наименьший из всех. При равенстве весов выбирается пара с самой левой вершиной, из всех таких та, у которой правый узел расположен левее.
- Минимальной совместимой парой называется наименьшая пара из всех совместимых.
- Шаг 1. Изначально мы имеем только алфавит (и соответствующие веса), отсортированный лексикографически.
- Шаг 2. Комбинирование (англ. Combining). По данной последовательности из вершин строим последовательность из вершины, комбинируя минимальную совместимую пару и заменяя ее левую вершину вершиной с весом и удаляя правую. Эта процедура повторяется до тех пор, пока не останется одна вершина.
- Шаг 3. Определение уровней. Находим номер уровня каждого листа относительно корня.
- Шаг 4. Перестройка. После того, как номера уровней всех листьев определены, просматриваем последовательность слева направо и находим самый левый номер максимального уровня, скажем, . Тогда и (в последовательности максимальные номера уровней всегда располагаются рядом). Создаем вершину уровня вместо вершин уровня . Другими словами, последовательность уровней заменяется на . Повторяем этот процесс до тех пор пока не останется одна вершина с уровнем .
- Конец.
Заметим, что перестройку легко можно организовать с помощью следующего стекового алгоритма.
Стековый алгоритм перестройки
- Начало.
- Шаг 0. Стек пуст.
- Шаг 1. Если значение двух верхних элементов различно или в стеке всего один элемент перейти к шагу , иначе к шагу .
- Шаг 2. Поместить следующий элемент на вершину стека. Перейти к шагу .
- Шаг 3. Удалить верхних элемента стека, поместить в стек элемент со значением меньшим на единицу, чем удаленные. Если значение нового элемента равно нулю — остановиться, иначе перейти к шагу .
- Конец.
Пример
Для примера возьмем алфавит
, а набор весов .Выполним второй шаг алгоритма.
Объединим сначала
и , получим вершину с весом , затем и на вершину веса , и т.д. пока не останется одна вершина.Выполним третий шаг. Определим уровни для каждого листа
.Выполним четвертый шаг, воспользовавшись стековым алгоритмом, и получим необходимое дерево.
Осталось только назначить код для каждого символа. Это делается аналогично коду Хаффмана: левым ребрам назначается , а правым .
Обоснование алгоритма Ху–Таккера
Далее последовательностью–впадиной будем называть последовательность вида
.Для обоснования воспользуемся несколькими леммами.
Лемма (1): |
Если последовательность весов монотонно не убывает или монотонно убывает, то стоимости деревьев Хаффмана и Ху–Таккера совпадают. Более того, существует дерево Хаффмана, удовлетворяющее требованию алфавитности (см. упражнения к разделу 2.3.4–5 вт.1 книги Д. Кнута Искусство программирования для ЭВМ). |
Лемма (2): |
Если последовательность весов является впадиной, то стоимости деревьев Хаффмана и Ху–Таккера равны. Более того, существует дерево Хаффмана, удовлетворяющее требованию алфавитности (см. книгу Т.Ч.Ху и М.Т.Шинг Комбинаторные алгоритмы — леммы 7 и 8 в разделе 5.8). |
Лемма (3): |
Если последовательность весов является впадиной, то новые вершины, создаваемые в фазе алгоритма Ху–Таккера, образуют очередь с монотонно возрастающими весами. Потомки каждой из этих новых вершин могут быть соединены в алфавитное бинарное дерево (англ. Alphabetical binary tree), удовлетворяющее условию: если , то . |
Заметим, что в последовательности-впадине две наименьших вершины всегда совместимы. Поэтому в алгоритме Хаффмана будут комбинироваться те же пары, что и в фазе
алгоритма Ху–Таккера. Для удобства введем две вершины алфавита и веса , расположенных соответственно в начале и в конце последовательности. Тогда последовательность весов можно рассматривать как последовательность состоящую из двух впадин: .Вершину
назовем горой между двумя впадинами.Из леммы 3 следует, что можно образовать две отдельных очереди — одну для каждой впадины. Из-за горы вершины из разных впадин не совместимы между собой. Когда наименьшие новые вершины(полученные в результате слияния) во впадинах станут достаточно большими, гора будет наконец скомбинирована. С этого момента все новые вершины станут совместимыми. Получается слияние двух очередей. По существу, фаза в алгоритме Ху–Таккера подобна слиянию нескольких очередей, а произвольную последовательность весов можно рассматривать как соединение нескольких впадин.
Чтобы понять, почему последовательность уровней может быть соединена в алфавитное дерево на третьем шаге алгоритма, достаточно рассмотреть два случая:
- Комбинируются две вершины из одной впадины.
- Комбинируются две вершины и из разных впадин. Пусть при этом между и расположены новые вершины — каждая из них имеет двух сыновей, скажем, и , и , и — когда комбинируются и , мы в действительности создаем общего отца для и . После этого общего отца получают и , затем и . Наконец, общего отца получают и .
Заметим, что это лишь обоснование, а не строгое доказательство, его задача — дать понимание правдивости алгоритма.
Корректность алгоритма Ху–Таккера
Как пишет Д. Кнут короткого доказательства алгоритма не известно, и вероятно оно никогда не будет найдено. Для доказательства своего алгоритма Ху и Таккеру потребовалось
теоремы и леммы (См. книгу Т.Ч.Ху и М.Т.Шинг Комбинаторные алгоритмы — стр.172).Сложность алгоритма
Для реализации данного алгоритма потребуется
памяти и времени на построение дерева.Разберем оценку. Для доказательства такой оценки времени введем понятие локально минимальной совместимой пары (л.м.с.п), пара
является л.м.с.п, когда выполнены следующие условия для всех вершин совместимых с и для всех вершин совместимых с . Также докажем следующую лемму:Лемма (1): |
Пусть — любая вершина в последовательности, состоящей из вершин алфавита и вершин, образованных в результате комбинации, — вес наименьшей вершины , совместимой с . Если в результате комбинирования некоторой л.м.с.п. какая-нибудь новая вершина становится совместимой с , то . В частности, в последовательности вершин будет оставаться л.м.с.п., пока комбинируются другие л.м.с.п.
|
Доказательство: |
Рассмотрим произвольную вершину и предположим, что вес наименьшей вершины, совместимой с , равен .Пусть комбинируется л.м.с.п. , причем ближе к . Тогда между и нет вершин алфавита и хотя бы одна из , должна быть вершиной алфавита, иначе при слиянии не появилось бы новых вершин (кроме ), совместимых с .Заметим, что может находиться в любой стороне от . Если вершина лежит справа от , то она не вершина алфавита. Пусть — вершина, которая становится совместимой с после слияния (она может быть как алфавитной так и слитой). Тогда должна быть совместима с в исходной последовательности и в силу локальной минимальности пары имеем .Но Мы доказали, что вес наименьшей вершины, совместимой с любой вершиной, не может уменьшиться. Отсюда следует, что любая л.м.с.п. , так как совместима с в исходной последовательности, а является наименьшим совместимым с весом. Поэтому . останется л.м.с.п. после слияния другой л.м.с.п., потому что останется наименьшей вершиной, совместимой с , и наоборот. |
Теперь согласно этой лемме нам не придется искать минимально совместимую пару, что весьма долго. Достаточно лишь находить л.м.с.п., при этом не важно, в каком порядке комбинировать л.м.с.п. По этому нам необходимо иметь массив размера , из которого мы будем удалять л.м.с.п и создавать новую вершину. На нем легко будет осуществлять поиск л.м.с.п. А так же необходим массив размера для реализации следующего шага, хранящий дерево. Второй шаг легко осуществить проходом по дереву, имея сохраненное дерево. Третий шаг, реализованный стековым алгоритмом, работает за времени и требует памяти на стек, на хранения уровней вершин и на хранение итогового дерева. Итак, общая оценка как раз получается памяти и времени.
См. также
Источники информации
- Т.Ч.Ху, М.Т.Шинг Комбинаторные алгоритмы. — стр. 166. — ISBN 5-85746-761-6
- Дональд Кнут Искусство программирования, том 3. Сортировка и поиск — 824 с. — ISBN 5-8459-0082-4