Векторные часы
Определение: |
Векторные часы — это функция $VC(e) \colon E \to \mathbb R^n$ (из событий в вектор константного размера) такая, что для любых двух событий $e$ и $f$ следующие утверждения равносильны:
|
Алгоритм векторных часов можно построить из логических часов Лампорта, если попросить каждый процесс помнить счётчики всех процессов, а не только свой:
- каждый поток имеет целочисленный $n$-мерный вектор ($n$ — количество потоков), проинициализированный нулями.
- в случае внутреннего события счётчик текущего процесса увеличивается на 1;
- перед отправкой сообщения внутренний счётчик, соответствующий текущему процессу, увеличивается на 1, и вектор целиком прикрепляется к сообщению;
- при получении сообщения счётчик текущего процесса увеличивается на 1, далее значения в текущем векторе выставляются в покомпонентный максимум от текущего и полученного.
Значением вышеупомянутой функции на событии является значение переменной, принадлежащей тому же потоку, что и событие. Стоит заметить, что векторное время уникально для каждого события.
Оказывается, что если в распределенной системе ввести частичный порядок предшествования на событиях, то имеет место следующее утверждение:
a предшествует b, тогда и только тогда, когда логическое время векторных часов события a меньше логического времени события b (при этом вектор x меньше вектора y покомпонентно с одной строгостью, т.е если для каждой компоненты выполяется и ).
Важным свойством векторных часов в распределенных системах с введенным частичным порядком предшествования оказывается то, что при сравнении векторов времени двух событий достаточно сравнивать только компоненты процессов, которым эти события принадлежат.