Материал из Викиконспекты
Определения для ориентированного и неориентированного графов
Определение: |
Матрицей инцидентности (инциденций) (англ. Incidence matrix) неориентированного графа называется матрица [math]I (|V| \times |E|)[/math], для которой [math]I_{i,j} = 1[/math], если вершина [math]v_i[/math] инцидентна ребру [math]e_j[/math], в противном случае [math]I_{i,j} = 0[/math]. |
Определение: |
Матрицей инцидентности (инциденций) (англ. Incidence matrix) ориентированного графа называется матрица [math]I (|V| \times |E|)[/math], для которой [math]I_{i,j} = 1[/math], если вершина [math]v_i[/math] является началом дуги [math]e_j[/math], [math]I_{i,j} = -1[/math], если [math]v_i[/math] является концом дуги [math]e_j[/math], в остальных случаях [math]I_{i,j} = 0[/math]. |
Свойства
Утверждение: |
Для неориентированных графов без петель и кратных рёбер матрица инцидентности бинарна (состоит из нулей и единиц). |
Утверждение: |
Для ориентированных графов без петель и кратных рёбер матрица инцидентности состоит из нулей, единиц и [math]-1[/math]. |
Утверждение (о сумме элементов строки матрицы инцидентности для неориентированного графа): |
Сумма элементов [math]i[/math]-й строки равна [math]deg \; v_i[/math]. |
Утверждение (о сумме элементов строки матрицы инцидентности для ориентированного графа): |
Сумма элементов [math]i[/math]-й строки равна [math]deg^+ v_i - deg^- v_i[/math]. |
Пример
Граф
|
Матрица инцидентности
|
Ориентированный граф
|
Матрица инцидентности
|
|
[math]\begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 0\\
1 & 0 & 0 & 1 & 0 & 0\\
0 & 1 & 0 & 0 & 0 & 1\\
0 & 0 & 1 & 0 & 0 & 1\\
0 & 0 & 0 & 1 & 1 & 0\\
\end{pmatrix}[/math]
|
|
[math]\begin{pmatrix}
-1 & 1 & -1 & 0 & -1 & 0\\
1 & 0 & 0 & -1 & 0 & 0\\
0 & -1 & 0 & 0 & 0 & 1\\
0 & 0 & 1 & 0 & 0 & -1\\
0 & 0 & 0 & 1 & 1 & 0\\
\end{pmatrix}[/math]
|
См. также
Источники
- Харари Фрэнк :Теория графов. Под ред. Л. Б. Штейнпресс. Изд. 2-е. — М.: Мир, 1973. — 180 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В.: Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- Википедия — Incidence matrix