Изменения

Перейти к: навигация, поиск
Нет описания правки
==Постановка задачи==
Мы предполагаем конечный алфавит <tex>\sum</tex>. Для последовательности <tex>X</tex>, мы обознамич его подпоследовательность <tex>x_{i}...x_{j} (1 \leqslant i \leqslant j \leqslant n)</tex> как <tex>X_{i,j}</tex>. Для двух последовательностей <tex>X</tex> и <tex>Y</tex>, если общая подпоследовательность <tex>Z</tex> последовательносей <tex>X</tex> и <tex>Y</tex> является палиндромом, то <tex>Z</tex> называется '''общей подпалиндромной подпоследовательностью''' (англ. ''common palindromicsubsequence''). Общая подпалиндромная последовательность, имеющая максимальную длину, называется '''наибольшей общей подпалиндромной подпоследовательностью''' (англ. ''The longest common palindromic sub-sequence (LCPS)'') и мы обозначим её как <tex>LCPS(X,Y)</tex>.
==Динамическое программирование==
===Теорема 1===
Пусть <tex>X</tex> и <tex>Y</tex> - две последовательности длины <tex>n</tex>, а <tex>X_{i,j}</tex> и <tex>Y_{i,j}</tex> - две подпоследовательности последовательностей <tex>X</tex> и <tex>Y</tex> соответственно. Пусть <tex>Z = z_{1}z_{2}...z_{u}</tex> - наибольшая общая подпалиндромная последовательность двух подпоследовательностей <tex>X_{i,j}</tex> и <tex>Y_{k,l}</tex>. Тогда выполняются следующие утверждения,
#Если <tex>x_i=x_j=y_k=y_l=a</tex> (для произвольного <tex>a</tex>), тогда <tex>z_1=z_u=a</tex> и <tex>z_2...z_{u-1}</tex> - наибольшая общая палиндромная подпоследовательность для <tex>X_{i+1,j-1}</tex> и <tex>Y_{k+1,l-1}</tex>.
#Если <tex>x_i=x_j=y_k=y_l не выполняется</tex>
55
правок

Навигация