Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2015 осень

2846 байт добавлено, 20:58, 29 октября 2015
Нет описания правки
# Постройте контактную схему, в которой для каждого из $2^n$ наборов конъюнкций переменных и их отрицаний есть пара вершин, между которыми реализуется эта конъюнкция, используя $O(2^n)$ ребер.
# Докажите, что любую булеву функцию можно представить контактной схемой, содержащей $O(2^n)$ ребер.
# Как выглядит дерево Хаффмана для частот символов $1, 2, ..., 2^{n-1}$ (степени двойки) ?
# Как выглядит дерево Хаффмана для частот символов $1, 1, 2, 3, ..., F_{n-1}$ (числа Фибоначчи)?
# Докажите, что если размер алфавита - степень двойки и частоты никаких двух символов не отличаются в 2 или более раз, то код Хаффмана не лучше кода постоянной длины
# Модифицируйте алгоритм Хаффмана, чтобы строить $k$-ичные префиксные коды
# Укажите, как построить дерево Хаффмана за линейное время, если символы уже отсортированы по частоте
# Предложите алгоритм построения оптимального кода среди префиксных кодов с длиной кодового слова не более L бит
# Предложите способ хранения информации об оптимальном префиксном коде для n-символьного алфавита, использующий не более $2n - 1 + n \lceil\log_2(n)\rceil$ бит ($\lceil x\rceil$ - округление $x$ вверх)
# Можно ли разработать алгоритм, который сжимает любой файл не короче заданной величины $N$ хотя бы на 1 бит?
# Приведите пример однозначно декодируемого кода оптимальной длины, который не является ни префиксным, ни развернутым префиксным
# Для каких префиксных кодов существует строка, для которой он является кодом Хаффмана? Предложите алгоритм построения такой строки.
# Пусть заданы пары $(u_i, v_i)$. Предложите алгоритм проверки, что существует код Хаффмана для некоторой строки, в котором $i$-е кодовое слово содержит $u_i$ нулей и $v_i$ единиц.
# Докажите, что если в коде Хаффмана для некоторой строки $i$-е кодовое слово содержит $u_i$ нулей и $v_i$ единиц, то для многочлена от двух переменных $f(x, y) = \sum_{i=1}^n x^{u_i}y^{v_i}$ выполнено $f(x, y) - 1 = (x + y - 1) g(x, y)$ для некоторого многочлена $g(x, y)$.
Анонимный участник

Навигация