Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2016 весна

3027 байт добавлено, 13:08, 8 мая 2016
Нет описания правки
# Докажите нерегулярность языка $0^a1^b2^c$, $a \ne b$ и $b \ne c$
# Приведите пример нерегулярного языка, для которого выполнена лемма о разрастании
# Докажите, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n^2)$.
# Докажите, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n)$.
# Предложите алгоритм проверки того, что регулярный язык бесконечен
# Предложите алгоритм подсчёта числа слов в регулярном языке (если язык бесконечен, алгоритм должен выдать информацию, что он бесконечен). Алгоритм должен работать за полином от числа состояний в автомате.
# Предложите алгоритм проверки того, что регулярный язык является беспрефиксным
# Предложите алгоритм проверки того, что один регулярный язык является подмножеством другого
# Предложите алгоритм проверки того, что регулярные языки не пересекаются
# Предложите алгоритм проверки того, что объединение двух заданных регулярных языков совпадет с некоторым третьим заданным.
# Приведите пример регулярного языка и двух неизоморфных недетерминированных автоматов для него, которые при этом имеют минимальное число состояний среди всех недетерминированных автоматов для этого языка.
# Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $X \times Y = Z$. Докажите, что этот язык не является регулярным.
# Рассмотрим отношение на словах $L$: $x \equiv y$, если для любых $u$, $v$ выполнено $uxv \in L \Leftrightarrow uyv \in L$. Классы эквивалентности этого отношения называются синтаксическим моноидом языка $L$. Докажите, что $L$ регулярный тогда и только тогда, когда синтаксический моноид $L$ конечен.
# Придумайте семейство регулярных языков $L_i$, у которых ДКА для $L_i$ содержит $O(i)$ состояний, а синтаксический моноид $L_i$ имеет неполиномиальный размер.
</wikitex>
Анонимный участник

Навигация