Изменения
→Иллюстрация
что <tex>\left\lfloor \frac{1}{2}\log_{10}^*|\alpha|\right\rfloor</tex> чётно.
Иными словами, <tex>A</tex> — это язык формул с длинами, лежащими в промежутках
<mathtex>\left[1,10^{10}\right),
\left[\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_4,
\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_6\right), \ldots</mathtex>
Далее будем обозначать <tex>\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n</tex>
как <tex>^{n}a</tex>.