Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2017 весна

Нет изменений в размере, 11:02, 26 апреля 2017
Нет описания правки
# Для символа $a$ обозначим как $La^{-1}$ множество слов $w$, таких что $wa \in L$. Докажите, что если $L$ регулярный, то $La^{-1}$ регулярный.
# Для символа $a$ обозначим как $a^{-1}L$ множество слов $w$, таких что $aw \in L$. Докажите, что если $L$ регулярный, то $a^{-1}L$ регулярный.
# Докажите или опровергните утверждения: (а) $Laa^{-1}=L$, (б) $La^{-1}a=L$, (в) $a^{-1}aL=L$, (г) $aaa^{-1}aLL=L$.
# Пусть $R$ и $S$ - регулярные языки. Выразите $(RS)a^{-1}$ через $R$, $S$, $Ra^{-1}$ и $Sa^{-1}$. Указание: рассмотрите два случая: $\varepsilon \in S$ или $\varepsilon \not\in S$.
# Обозначим как $\min L$ множество слов $w \in L$, таких что никакой собственный префикс $w$ не является словом языка $L$. Докажите, что если $L$ регулярный, то и $\min L$ регулярный.
Анонимный участник

Навигация