Изменения

Перейти к: навигация, поиск
Нет описания правки
|proof=
<tex>1.</tex>Докажем, что ряд <tex>\psi(s)</tex> сходится абсолютно в любой точке <tex>s,\,\left\vert s \right\vert = q < \rho</tex>.
Поскольку функция <tex>\varphi</tex> монотонна и непрерывна на отрезке <tex>[0, r],\,</tex>существует точка <tex>p \in [0, r]</tex>, такая, что <tex>\varphi(p) = q</tex>. Поэтому для любой частичной суммы <tex> \psi_n(s) = \psi_0 + \psi_1 \cdot s + \ldots + \psi_n \cdot s^n</tex> ряда <tex> \psi(s) </tex>
<tex> \left\vert \psi_n(s) \right\vert \leqslant \psi_n(q) = \psi_n(\varphi(p)) \leqslant \varphi(p),</tex>
Первое утверждение теоремы доказано.
 <tex>2.</tex>Перепишем теперь утверждение Лагранжа <tex> \varphi(s) = s \cdot \psi \cdot (\varphi(s)) </tex> в виде <tex> \psi(\lambda) = \dfrac {\lambda} {\varphi^{-1}(\lambda)}. </tex>
Функции <tex>\psi(\lambda) </tex> и <tex> \varphi^{-1}(\lambda)</tex> определены и
[https://ru.wikipedia.org/wiki/%D0%93%D0%BE%D0%BB%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F#%D0%9E%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 голоморфны]
344
правки

Навигация