Таблица инверсий — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 59: Строка 59:
 
== Алгоритм построения за O(N) ==
 
== Алгоритм построения за O(N) ==
  
Для построения таблицы инверсий за линейное время воспользуемся карманной сортировкой. Известно что карманная сортировка имеет линейную сложность, но только в том случае если элементы равномерно распределены. Т.к. мы ищем кол-во инверсий в перестановке то мы знаем что наши элементы встречаются единожды , а следовательно равномерно распределены. При карманной сортировке нужно определить карман '''B''', в который попадет текущий элемент. Затем найти количество элементов в старших карманах относительно '''B'''. Потом аккуратно подсчитать количество элементов, больших текущего в кармане '''B'''. Карман '''A''' считается старшим для кармана '''B''', если любой элемент из '''A''' больше любого элемента из '''B'''.
+
Для построения таблицы инверсий за линейное время воспользуемся карманной сортировкой. Известно что карманная сортировка имеет линейную сложность, но только в том случае если элементы равномерно распределены. Т.к. мы ищем кол-во инверсий в перестановке то мы знаем что наши элементы встречаются единожды , а следовательно равномерно распределены. При карманной сортировке нужно определить карман <tex>B</tex>, в который попадет текущий элемент. Затем найти количество элементов в старших карманах относительно <tex>B</tex>. Потом аккуратно подсчитать количество элементов, больших текущего в кармане <tex>B</tex>. Карман <tex>A</tex> считается старшим для кармана <tex>B</tex>, если любой элемент из <tex>A</tex> больше любого элемента из <tex>B</tex>.
  
 
      
 
      
   <font color=green>MAX - число больше a.size() и из которого можно извлечь целый квадратный корень.</font>
+
   <font color=green>MAX - число больше a.size и из которого можно извлечь целый квадратный корень.</font>
 
   <font color=green>BUCKET - размер кармана BUCKET=sqrt(MAX)</font>
 
   <font color=green>BUCKET - размер кармана BUCKET=sqrt(MAX)</font>
  '''int''' bucket_sort( '''vector<int>''' a )
+
  '''int''' bucket_sort('''vector<int>''' a):
     '''int''' ans = 0;<font color=green>//изначально кол-во инверсий</font>
+
     '''int''' ans = 0<font color=green> // изначально кол-во инверсий</font>
     '''vector<int>''' tab_invers(a'''.size()'''+1);<font color=green>//таблица перестановок</font>
+
     '''vector<int>''' tab_invers(a.size + 1) <font color=green>// таблица перестановок</font>
     '''vector< list<int> >''' mem(BUCKET);
+
     '''vector< list<int> >''' mem(BUCKET)
     '''for'''('''int''' i = 0;i < a'''.size()''' ; i++)
+
     '''for'''('''int''' i = 0;i < a.size ; i++)
       '''int''' invers = 0; <font color=green>//кол-во инверсий которые создает элемент a[i]</font>
+
       '''int''' invers = 0 <font color=green> // кол-во инверсий которые создает элемент a[i]</font>
       '''int''' pos = (a[i] - 1)/(MAX / BUCKET);<font color=green>//Определяем в каком кармане должен лежать элемент</font>
+
       '''int''' pos = (a[i] - 1)/(MAX / BUCKET) <font color=green>// Определяем в каком кармане должен лежать элемент</font>
       '''list<int>::iterator''' it = mem[pos]'''.begin()''';
+
       '''list<int>::iterator''' it = mem[pos]'''.begin()'''
       '''int''' newpos = 0;
+
       '''int''' newpos = 0
       '''while'''(it != mem[pos]'''.end()''' && (*it) < a[i] ) <font color=green>//идем до позиции где должен стоять элемент</font>
+
       '''while'''(it != mem[pos]'''.end()''' && (*it) < a[i] ) <font color=green>// идем до позиции где должен стоять элемент</font>
         it++;
+
         it++
         newpos++;
+
         newpos++
       invers += mem[pos]'''.size()''' - newpos;<font color=green>//ищем сколько инверсий эленент создает в своем кармане</font>
+
       invers += mem[pos].size - newpos <font color=green>// ищем сколько инверсий эленент создает в своем кармане</font>
       mem[pos]'''.insert'''( it , a[i] );<font color=green>//вставляем элемент в список</font>
+
       mem[pos]'''.insert'''( it , a[i] ) <font color=green>// вставляем элемент в список</font>
       '''for'''('''int''' i = pos + 1 ; i < BUCKET ; i++) <font color=green>//ищем сколько инверсий он создает с элементами в других карманах</font>
+
       '''for'''('''int''' i = pos + 1 ; i < BUCKET ; i++) <font color=green>// ищем сколько инверсий он создает с элементами в других карманах</font>
         invers += mem[i]'''.size()''';
+
         invers += mem[i].size
       tab_invers[a[i]] = invers;
+
       tab_invers[a[i]] = invers
       ans += invers;
+
       ans += invers
    '''return''' tab_invers;
+
     '''return''' ans
     '''return''' ans;
 
  
Утверждается, что cложность представленного алгоритма есть <tex>O(n)</tex>.
+
Сложность представленного алгоритма есть <tex>O(n)</tex>.
  
 
== Алгоритм восстановления ==
 
== Алгоритм восстановления ==

Версия 23:39, 15 декабря 2016

Пусть [math] P = (p_1,p_2,\dots,p_n)[/math] является перестановкой чисел [math] 1, 2,\dots, n[/math].


Определение:
Инверсией (англ. inversion) в перестановке [math]P[/math] называется всякая пара индексов [math]i, j[/math] такая, что [math]1\leqslant i\lt j\leqslant n[/math] и [math]P[i]\gt P[j][/math].


Определение:
Таблицей инверсий (англ. inversion table) перестановки [math] P [/math] называют такую последовательность [math] T = (t_1,t_2,\dots,t_n)[/math], в которой [math]t_i[/math] равно числу элементов перестановки [math] P [/math], стоящих в [math] P [/math] левее числа [math]i[/math] и больших [math]i[/math].


Алгоритм построения за O(N2)

Таблицу инверсий тривиально построить по определению. Для каждого элемента перестановки считаем количество элементов, больших данного и стоящих в перестановке левее него. Алгоритм построения в псевдокоде выглядит так:

T[1..n] = 0
for i = 1..n
  for j = 1..(i - 1)
    if P[j] > P[i]
      T[P[i]] = T[P[i]]++

Сложность данного алгоритма — [math]O(n^2)[/math]. Уменьшить время работы можно используя алгоритм, похожий на сортировку слиянием.

Алгоритм построения за O(N log N)

Пусть дано разбиение перестановки на два списка, причём для каждого элемента дано число инверсий слева с элементами того же списка и известно, что все числа первого списка стоят левее всех чисел второго списка в исходной перестановке. Будем считать количество инверсий слева элементов обоих списков следующим образом: сливаем списки, аналогично сортировке слиянием.

Если в результат нужно записать элемент первого списка, то все нерассмотренные элементы второго списка больше, следовательно, количество инверсий для этого элемента не меняется. Если в результат нужно записать элемент второго списка, то все нерассмотренные элементы первого списка больше его и стоят левее. Следовательно, количество инверсий для этого элемента следует увеличить на количество нерассмотренных элементов первого списка.

Описанный алгоритм записывается в псевдокод следующим образом:

// inverses_merge — процедура, сливающая два списка пар
// inverses_get — процедура, рекурсивно получающая таблицу инверсий для перестановки
def inverses_merge(ls1, ls2):
  result = []
  it1, it2 = null
  while (it1 < ls1.length) and (it2 < ls2.length)
   if ls1[it1].item < ls2[it2].item
      result.append(ls1[it1])
      it1++
    else
      result.append(item = ls2[it2].item, inverses = ls2[it2].inverses + ls1.length - it1)
      it2++
  while it1 < ls1.length
    result.append(ls1[it1])
    it1++
  while it2 < ls2.length
    result.append(ls2[it2])
    it2++
  return result

def inverses_get(ls):
  if ls.length == 1
    return [(item = ls[0], inverses = 0)]
  else
    return inverses_merge(inverses_get(ls.first_half), inverses_get(ls.second_half))


Сложность представленного алгоритма есть [math]O(n\log n)[/math]. Алгоритм с такой же сложностью можно построить с помощью дерева отрезков.

Алгоритм построения за O(N)

Для построения таблицы инверсий за линейное время воспользуемся карманной сортировкой. Известно что карманная сортировка имеет линейную сложность, но только в том случае если элементы равномерно распределены. Т.к. мы ищем кол-во инверсий в перестановке то мы знаем что наши элементы встречаются единожды , а следовательно равномерно распределены. При карманной сортировке нужно определить карман [math]B[/math], в который попадет текущий элемент. Затем найти количество элементов в старших карманах относительно [math]B[/math]. Потом аккуратно подсчитать количество элементов, больших текущего в кармане [math]B[/math]. Карман [math]A[/math] считается старшим для кармана [math]B[/math], если любой элемент из [math]A[/math] больше любого элемента из [math]B[/math].


  MAX - число больше a.size и из которого можно извлечь целый квадратный корень.
  BUCKET - размер кармана BUCKET=sqrt(MAX)
int bucket_sort(vector<int> a):
   int ans = 0 // изначально кол-во инверсий
   vector<int> tab_invers(a.size + 1) // таблица перестановок
   vector< list<int> > mem(BUCKET)
   for(int i = 0;i < a.size ; i++)
     int invers = 0  // кол-во инверсий которые создает элемент a[i]
     int pos = (a[i] - 1)/(MAX / BUCKET) // Определяем в каком кармане должен лежать элемент
     list<int>::iterator it = mem[pos].begin()
     int newpos = 0
     while(it != mem[pos].end() && (*it) < a[i] ) // идем до позиции где должен стоять элемент
        it++
        newpos++
     invers += mem[pos].size - newpos // ищем сколько инверсий эленент создает в своем кармане
     mem[pos].insert( it , a[i] ) // вставляем элемент в список
     for(int i = pos + 1 ; i < BUCKET ; i++) // ищем сколько инверсий он создает с элементами в других карманах
       invers += mem[i].size
     tab_invers[a[i]] = invers
     ans += invers
   return ans

Сложность представленного алгоритма есть [math]O(n)[/math].

Алгоритм восстановления

Для восстановления перестановки по таблицы инверсий [math]T[/math] воспользуемся следующим соображением: единица стоит в перестановке на [math]T_0[/math]-ом месте (индексируем элементы с нуля), так как остальные числа в перестановке больше единицы. Далее, если известны расположения всех чисел [math]1, \dots, k[/math], то число [math]k + 1[/math] стоит на [math]T_{k + 1}[/math]-ой ещё не занятой позиции: все числа, меньшие [math]k + 1[/math] уже расставлены. Это рассуждение напрямую переписывается в код следующим образом:

// j — счётчик пропущенных свободных позиций
// k — количество инверсий слева для элемента curr
// result — массив, в который записывается перестановка. Равенство элемента массива нулю обозначает, что эта позиция свободна.
def recover_straight(ls):
  n = ls.length
  result = array(0, n)
  curr = 1
  for k in ls
   j = 0
    for i = 0..(n - 1)
      if result[i] == 0
        if  j == k
          result[i] = curr
          break
        else:
          j++
    curr++
  return result


Этот простой алгоритм имеет сложность [math]O(n^2)[/math] — внутренний цикл делает до [math]n[/math] итераций, внешний — ровно [math]n[/math] итераций.

Видно, что для восстановления нужно узнавать [math]k[/math]-ую свободную позицию. Это можно делать с помощью дерева отрезков следующим образом: построим дерево отрезков для суммы на массиве из единиц. Единица в позиции означает, что данная позиция свободна. Чтобы найти [math]k[/math]-ую свободную позицию, нужно спускаться (начиная с корня) в левое поддерево если сумма в нём больше, чем [math]k[/math], и в правое дерево иначе.

Данный алгоритм переписывается в код следующим образом:

// build_segment_tree — строит дерево отрезков над массивом
// node — вершина дерева
// node.index — индекс соответствующего элемента в массиве для листа дерева
def recover(inv):
  n = inv.length
  tree = build_segment_tree(array(n, 1))
  result = array(n)
  curr = 1
  for k in inv
    node = tree.root
    while !node.is_leaf
      if k < node.left.value
        node = node.left
      else
        k -= node.left.value
        node = node.right
    result[node.index] = curr
    node.add(-1)
    curr++
  return result


Этот алгоритм имеет сложность [math]O(n \log n)[/math]: делается [math]n[/math] итераций цикла, в которой происходит спуск по дереву высоты [math]O(\log n)[/math] и один запрос на дереве отрезков. Таким образом, время работы алгоритма на каждой итерации есть [math]O(\log n)[/math].

Пример

Рассмотрим пример построения таблицы инверсий и восстановления перестановки по таблице инверсий. Пусть дана перестановка [math](5, 7, 1, 3, 4, 6, 8, 2)[/math]. Следующая таблица показывает работу алгоритма за [math]O(n \log n)[/math], на каждой строке один уровень рекурсии (на первой строке — самый глубокий). В скобках стоят пары: элемент перестановки, количество инверсий. Полужирным отмечены элементы, у которых обновилось значение количества инверсий на данном шаге.

(5, 0) (7, 0) (1, 0) (3, 0) (4, 0) (6, 0) (8, 0) (2, 0)
(5, 0), (7, 0) (1, 0), (3, 0) (4, 0), (6, 0) (2, 1), (8, 0)
(1, 2), (3, 2), (5, 0), (7, 0) (2, 3), (4, 0), (6, 0), (8, 0)
(1, 2), (2, 6), (3, 2), (4, 2), (5, 0), (6, 1), (7, 0), (8, 0)

Полученная таблица инверсий: [math](2, 6, 2, 2, 0, 1, 0, 0)[/math]. Восстановим перестановку по таблице инверсий, начиная с пустого массива.

[math]0[/math] [math]0[/math] [math]\bf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] пропускаем две свободных позиции и ставим [math]\bf{1}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]\bf{2}[/math] пропускаем шесть свободных позиций и ставим [math]\bf{2}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]\bf{3}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]2[/math] пропускаем две свободных позиции и ставим [math]\bf{3}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]\bf{4}[/math] [math]0[/math] [math]0[/math] [math]2[/math] пропускаем две свободных позиции и ставим [math]\bf{4}[/math]
[math]\bf{5}[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]0[/math] [math]0[/math] [math]2[/math] не пропускаем свободных позиции и ставим [math]\bf{5}[/math]
[math]5[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]\bf{6}[/math] [math]0[/math] [math]2[/math] пропускаем одну свободную позицию и ставим [math]\bf{6}[/math]
[math]5[/math] [math]\bf{7}[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]6[/math] [math]0[/math] [math]2[/math] не пропускаем свободных позиций и ставим [math]\bf{7}[/math]
[math]5[/math] [math]7[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]6[/math] [math]\bf{8}[/math] [math]2[/math] не пропускаем свободных позиций и ставим [math]\bf{8}[/math]

См. также

Источники информации