Теорема Кэли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
|about=о вложении любой конечной группы в группу перестановок
 
|about=о вложении любой конечной группы в группу перестановок
 
|statement=
 
|statement=
Любая конечная группа <tex>G</tex> изоморфна некоторой подгруппе группы перестановок (симметрической группе).
+
Любая конечная группа <tex>G</tex> порядка <tex>n</tex> изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы <tex>S_n</tex>).
  
 
|proof=
 
|proof=
Пусть <tex>\circ</tex> {{---}} бинарная операция в группе <tex>G</tex>.
+
Пусть <tex>\circ</tex> {{---}} бинарная операция в конечной группе <tex>G=\{g_1, g_2,...,g_n\}</tex>.
Рассмотрим некоторый элемент <tex>g \in G</tex> и функцию <tex>f_g : G \rightarrow G, f_g(x) = g \circ x</tex>.
+
Для каждого элемента <tex>g\in G</tex> построим соответствующую перестановку <tex>f_g\in S_n:</tex>
 +
<tex> f_g=\begin{bmatrix} g_1 & g_2 & ... & g_n \\ f_g(g_1) & f_g(g_2) & ... & f_g(g_n)  \end{bmatrix},</tex> где <tex>f_g(x) = g \circ x</tex>.
 +
 
 
<tex>f_g</tex> {{---}} перестановка, так как  
 
<tex>f_g</tex> {{---}} перестановка, так как  
  
# Для любых <tex>x, y</tex> таких, что <tex>x \neq y</tex> верно, что <tex>g \circ x \neq g \circ y</tex> <tex>\Rightarrow f_g</tex> {{---}} инъекция.
+
# Для любых <tex>a, b\in G</tex> таких, что <tex>a \neq b</tex> верно, что <tex>g \circ a \neq g \circ b</tex> <tex>\Rightarrow f_g</tex> {{---}} инъекция.
 
# Мощность <tex>G</tex> {{---}} конечна <tex>\Rightarrow f_g</tex> {{---}} биективно, и является перестановкой.
 
# Мощность <tex>G</tex> {{---}} конечна <tex>\Rightarrow f_g</tex> {{---}} биективно, и является перестановкой.
  
Строка 17: Строка 19:
 
Если <tex>f_g</tex> {{---}} перестановка, то <tex>f_{g^{-1}}</tex> {{---}} обратная перестановка, где <tex>g^{-1}</tex> {{---}} обратный элемент <tex>g</tex>, так как <tex> (f_{g^{-1}} \circ f_g) (x) = f_{g^{-1}}(f_g (x)) =g^{-1} \circ g \circ x = x </tex>.
 
Если <tex>f_g</tex> {{---}} перестановка, то <tex>f_{g^{-1}}</tex> {{---}} обратная перестановка, где <tex>g^{-1}</tex> {{---}} обратный элемент <tex>g</tex>, так как <tex> (f_{g^{-1}} \circ f_g) (x) = f_{g^{-1}}(f_g (x)) =g^{-1} \circ g \circ x = x </tex>.
 
Если <tex>e</tex> {{---}} нейтральный элемент в группе, то <tex>f_e</tex> {{---}} тождественная перестановка.
 
Если <tex>e</tex> {{---}} нейтральный элемент в группе, то <tex>f_e</tex> {{---}} тождественная перестановка.
Таким образом множество всех функций <tex>K = \{f_g : g \in G\}</tex> {{---}} подгруппа симметрической группы, так как композиция двух функций из <tex>K</tex> не выводит из <tex>K</tex>, потому что <tex>(f_a \circ f_b)(x) = f_a(f_b(x)) = a \circ b \circ x = f_{a \circ b}(x) = f_c(x) </tex>, где <tex>c = a \circ b </tex>, значит <tex>f_a \circ f_b \in K</tex>
+
 
 +
Докажем,что множество всех перестановок <tex>K = \{f_g : g \in G\}</tex> {{---}} подгруппа симметрической группы <tex>S_n</tex>.
 +
 
 +
Пусть <tex>g_i,g_j\in G</tex>.Рассмотрим перестановку <tex>(f_{g_i} \circ f_{g_j})(x)</tex>. Так как <tex>G</tex> {{---}} группа, то для любого <tex>x\in G</tex> верно
 +
 
 +
<tex>(f_{g_i} \circ f_{g_j})(x) = f_{g_i}(f_{g_j}(x)) = {g_i} \circ {g_j} \circ x = f_{g_i \circ g_j}(x) = f_c(x) </tex>,  
 +
 
 +
Так как <tex>G</tex> {{---}} группа, то <tex>g_i \circ g_j =g_k\in G</tex> и <tex>f_{g_i \circ g_j}=f_{g_k}</tex>, откуда <tex>f_{g_i} \circ f_{g_j}\in K</tex>. Значит, <tex>K</tex> {{---}} подгруппа группы <tex>S_n</tex>.
 
   
 
   
Рассмотрим множество <tex>K</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что для всех <tex>x \in G \quad(f_g \circ f_h)(x) = f_{(g \circ h)}(x)</tex>, то есть <tex>T(g)\circ T(h) = T(g \circ h)</tex>.  
+
Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим отображение <tex>\varphi : G \rightarrow K,\</tex>, которое переводит элемент <tex>g\in G</tex> в элемент <tex>\varphi(g)=f_{g^\prime}\in K</tex>, где <tex>{g^\prime}</tex> симметричен элементу <tex>g</tex> в группе <tex>G</tex>.  
 +
 
 +
Заметим, что  
 +
#Отображение <tex>\varphi </tex> взаимно однозначно.
 +
#Для любых <tex>g_i,g_j\in G</tex> верно
 +
<tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = </tex>, то есть <tex>T(g)\circ T(h) = T(g \circ h)</tex>.  
  
 
Значит <tex>T</tex> {{---}} гомоморфизм.
 
Значит <tex>T</tex> {{---}} гомоморфизм.

Версия 06:31, 8 января 2017

Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок):
Любая конечная группа [math]G[/math] порядка [math]n[/math] изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы [math]S_n[/math]).
Доказательство:
[math]\triangleright[/math]

Пусть [math]\circ[/math] — бинарная операция в конечной группе [math]G=\{g_1, g_2,...,g_n\}[/math]. Для каждого элемента [math]g\in G[/math] построим соответствующую перестановку [math]f_g\in S_n:[/math] [math] f_g=\begin{bmatrix} g_1 & g_2 & ... & g_n \\ f_g(g_1) & f_g(g_2) & ... & f_g(g_n) \end{bmatrix},[/math] где [math]f_g(x) = g \circ x[/math].

[math]f_g[/math] — перестановка, так как

  1. Для любых [math]a, b\in G[/math] таких, что [math]a \neq b[/math] верно, что [math]g \circ a \neq g \circ b[/math] [math]\Rightarrow f_g[/math] — инъекция.
  2. Мощность [math]G[/math] — конечна [math]\Rightarrow f_g[/math] — биективно, и является перестановкой.

Пусть [math]\circ[/math] — композиция двух перестановок. Если [math]f_g[/math] — перестановка, то [math]f_{g^{-1}}[/math] — обратная перестановка, где [math]g^{-1}[/math] — обратный элемент [math]g[/math], так как [math] (f_{g^{-1}} \circ f_g) (x) = f_{g^{-1}}(f_g (x)) =g^{-1} \circ g \circ x = x [/math]. Если [math]e[/math] — нейтральный элемент в группе, то [math]f_e[/math] — тождественная перестановка.

Докажем,что множество всех перестановок [math]K = \{f_g : g \in G\}[/math] — подгруппа симметрической группы [math]S_n[/math].

Пусть [math]g_i,g_j\in G[/math].Рассмотрим перестановку [math](f_{g_i} \circ f_{g_j})(x)[/math]. Так как [math]G[/math] — группа, то для любого [math]x\in G[/math] верно

[math](f_{g_i} \circ f_{g_j})(x) = f_{g_i}(f_{g_j}(x)) = {g_i} \circ {g_j} \circ x = f_{g_i \circ g_j}(x) = f_c(x) [/math],

Так как [math]G[/math] — группа, то [math]g_i \circ g_j =g_k\in G[/math] и [math]f_{g_i \circ g_j}=f_{g_k}[/math], откуда [math]f_{g_i} \circ f_{g_j}\in K[/math]. Значит, [math]K[/math] — подгруппа группы [math]S_n[/math].

Осталось доказать, что [math]G[/math] и [math]K[/math] изоморфны. Для этого рассмотрим отображение [math]\varphi : G \rightarrow K,\[/math], которое переводит элемент [math]g\in G[/math] в элемент [math]\varphi(g)=f_{g^\prime}\in K[/math], где [math]{g^\prime}[/math] симметричен элементу [math]g[/math] в группе [math]G[/math].

Заметим, что

  1. Отображение [math]\varphi [/math] взаимно однозначно.
  2. Для любых [math]g_i,g_j\in G[/math] верно

[math]\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = [/math], то есть [math]T(g)\circ T(h) = T(g \circ h)[/math].

Значит [math]T[/math] — гомоморфизм.

  1. [math]T[/math] — инъекция, потому что [math]f_g(x) = f_{g'}(x) \Rightarrow g = f_g(x) \circ x^{-1} = f_{g'}(x) \circ x^{-1} = g'[/math].
  2. Сюрьективность [math]T[/math] очевидна из определения [math]K[/math].
То есть [math]T[/math] — гомоморфизм и биекция, а значит изоморфизм [math]G[/math] и [math]K[/math] установлен.
[math]\triangleleft[/math]

Примеры

Примером и иллюстрацией для данной теоремы является группа [math] \mathbb Z_3[/math] — группа остатков по модулю 3, с операцией сложения.

Пусть [math]\ \varphi :\mathbb{Z}_3\rightarrow S_3[/math]

[math] \varphi(0)=\begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} [/math]

[math] \varphi(1)=\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix} [/math]

[math] \varphi(2)=\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix} [/math]

См. также

Источники информации