Турниры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
|definition = '''Турнир''' — [[ориентированный граф]], между любой парой различных вершин которого есть ровно одно ориентированное ребро.
+
|definition = '''Турнир''' (англ. ''Tournament'') — [[ориентированный граф]], между любой парой различных вершин которого есть ровно одно ориентированное ребро.
 
}}  
 
}}  
  
Строка 6: Строка 6:
  
 
[[Файл:Tournament_1_3.png|415px|thumb|left|Турниры из трех вершин]]
 
[[Файл:Tournament_1_3.png|415px|thumb|left|Турниры из трех вершин]]
 
 
  
 
<br clear="all">
 
<br clear="all">
  
 +
==Оценка количества турниров в графе==
 +
Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из <tex>n</tex> вершин равно <tex dpi=150>2^{\frac{n\cdot(n-1)}{2}}</tex>.
 
==Сильно связные турниры==
 
==Сильно связные турниры==
 
{{Определение|definition = Турнир называется [[Отношение связности, компоненты связности#sc_def |сильно связным]], если из любой вершины существуют пути до всех других.}}
 
{{Определение|definition = Турнир называется [[Отношение связности, компоненты связности#sc_def |сильно связным]], если из любой вершины существуют пути до всех других.}}
Строка 32: Строка 32:
 
* [[Теорема Редеи-Камиона]]
 
* [[Теорема Редеи-Камиона]]
  
==Литература==
+
==Источники информации==
 
* Асанов М. О., Баранский В. А., Расин В. В. '''Дискретная математика: графы, матроиды, алгоритмы''' — НИЦ РХД, 2001. — ISBN 5-93972-076-5
 
* Асанов М. О., Баранский В. А., Расин В. В. '''Дискретная математика: графы, матроиды, алгоритмы''' — НИЦ РХД, 2001. — ISBN 5-93972-076-5
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Обходы графов]]
 
[[Категория: Обходы графов]]

Версия 14:29, 7 ноября 2015

Определение:
Турнир (англ. Tournament) — ориентированный граф, между любой парой различных вершин которого есть ровно одно ориентированное ребро.


Название этого класса графов связано с тем, что их удобно использовать для описания результатов командных соревнований в некоторых видах спорта.

Турниры из трех вершин


Оценка количества турниров в графе

Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из [math]n[/math] вершин равно [math]2^{\frac{n\cdot(n-1)}{2}}[/math].

Сильно связные турниры

Определение:
Турнир называется сильно связным, если из любой вершины существуют пути до всех других.


Определение:
Турнир называется гамильтоновым, если он содержит гамильтонов цикл.


Негамильтонов турнир


Не все турниры гамильтоновы. Определение не исключает существование вершины с полустепенью исхода или захода равной нулю — в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).

Теорема Редеи-Камиона устанавливает 2 следующих факта:

  1. Все турниры полугамильтоновы.
  2. Турнир гамильтонов тогда и только тогда, когда он сильно связен.


См. также

Источники информации

  • Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — ISBN 5-93972-076-5