Алгебра и геометрия 1 курс:Билеты 2 семестра

Материал из Викиконспекты
Версия от 19:32, 14 июня 2013; 188.65.68.153 (обсуждение) (билет №39)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Господа, я был бы очень рад, если бы вы продолжили мою работу.

билет №1[править]

  1. Линейный оператор
  2. Собственные векторы и собственные значения
  3. Квадратичные формы

билет №2[править]

  1. Пространство линейных операторов
  2. Кратности собственных чисел
  3. Квадратичные формы

билет №3[править]

  1. Алгебра
  2. Cпектральный анализ скалярного оператора
  3. Квадратичные формы

билет №4[править]

  1. Алгебра
  2. Нильпотентные операторы
  3. Квадратичные формы

билет №5[править]

  1. Обратная матрица
  2. Инвариантные подпространства
  3. Эрмитовски сопряженный и эрмитов оператор

билет №6[править]

  1. Обратная матрица
  2. Минимальный полином и инвариантные подпространства
  3. Унитарный и ортогональный операторы

билет №7[править]

  1. Ядро и образ линейного оператора
  2. Собственные векторы и собственные значения
  3. Унитарный и ортогональный операторы

билет №8[править]

  1. Обратный оператор
  2. Собственные векторы и собственные значения
  3. Эрмитовски сопряженный и эрмитов оператор

билет №9[править]

  1. Замена базиса
  2. Спектральная теорема
  3. Эрмитовски сопряженный и эрмитов оператор

билет №10[править]

  1. Замена базиса
  2. Cпектральный анализ линейного оператора с простым спектром
  3. Ковариантность и контравариантность

билет №11[править]

  1. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы
  2. Спектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема
  3. Ковариантные и контравариантные координаты вектора. Операции поднятия и опускания индексов

билет №12[править]

  1. Независимость определителя оператора от базиса. Теорема умножения определителей
  2. Спектральная теорема и функциональное исчисление для скалярного оператора
  3. Метрический тензор. Естественный изоморфизм евклидова и сопряженного ему пространств

билет №13[править]

  1. Транспонирование тензора
  2. Разложение линейного пространства в сумму подпространств. 2-я теорема о ядре и образе. Теорема о проекторах
  3. Ортогональные системы векторов: коэффициенты Фурье, неравенства Бесселя и Парсеваля

билет №14[править]

  1. Определитель линейного оператора. Внешняя степень оператора.
  2. Cтруктура нильпотентного оператора. Базис Жордана (обзор).
  3. Задача о перпендикуляре.

билет №15[править]

  1. Независимость определителя оператора от базиса. Теорема умножения определителей.
  2. Алгебра операторных полиномов. Минимальный полином линейного оператора.
  3. Ортогональная сумма подпространств. Ортогональный проектор.

билет №16[править]

  1. Тензоры (ковариантность, независимое от ПЛФ определение). Пространство тензоров.
  2. Жорданова форма матрицы линейного оператора.
  3. Ортогональность. Ортогональный базис. Процесс ортогонализации Грама-Шмидта.

билет №17[править]

  1. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
  2. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
  3. Комплексное евклидово пространство. Основные неравенства.

билет №18[править]

  1. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
  2. Cпектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
  3. Вещественное евклидово и псевдоевклидово пространство. Основные неравенства.

билет №19[править]

  1. Транспонирование тензора.
  2. Алгебра скалярных полиномов. Идеал. Минимальный полином.
  3. Метрические, нормированные и евклидовы пространства

билет №20[править]

  1. Свертка тензора.
  2. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.
  3. Квадратичные формы: закон инерции квадратичной формы.

билет №21[править]

  1. Линейные операторы и их матричная запись. Примеры.
  2. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
  3. Квадратичные формы: одновременное приведение пары квадратичных форм к сумме квадратов.

билет №22[править]

  1. Пространство линейных операторов
  2. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли
  3. Квадратичные формы: закон инерции квадратичной формы.

билет №23[править]

  1. Алгебра. Примеры. Изоморфизм алгебр.
  2. Cпектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
  3. Квадратичные формы: приведение к каноническому виду унитарным преобразованием.

билет №24[править]

  1. Алгебра операторов и матриц.
  2. Нильпотентные операторы (определение, простейшие свойства). Жорданова клетка.
  3. Квадратичные формы: основные определения, приведение к каноническому виду методом Лагранжа.

билет №25[править]

  1. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
  2. Инварианты линейного оператора. Инвариантные подпространства.
  3. Приведение эрмитовой матрицы к диагональному виду унитарным преобразованием.

билет №26[править]

  1. Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.
  2. Минимальный полином и инвариантные подпространства. Спектральная теорема для линейного оператора произвольного вида.
  3. Унитарный оператор: теорема о скалярном типе унитарного оператора, спектральная теорема.

билет №27[править]

  1. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
  2. Ультраинвариантные подпространства
  3. Унитарный и ортогональный операторы: основные определения и свойства.

билет №28[править]

  1. Обратный оператор. Критерий существования обратного оператора.
  2. Собственные векторы и собственные значения линейного оператора: основные определения и свойства.
  3. Эрмитов и самосопряженный операторы в евклидовом пространстве: спектральная теорема, минимальное свойство.

билет №29[править]

  1. Преобразование координат векторов Х и Х* при замене базиса.
  2. Спектральная теорема и инварианты скалярного оператора. Тождество Кэли.
  3. Эрмитов и самосопряженный операторы в евклидовом пространстве: теоремы о скалярном типе эрмитова и самосопряженного оператора.

билет №30[править]

  1. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
  2. Алгебра скалярных полиномов. Идеал. Минимальный полином.
  3. Эрмитовски сопряженный и эрмитов оператор в евклидовом пространстве: основные определения и свойства.

билет №31[править]

  1. Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.
  2. Cпектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
  3. Ковариантные и контравариантные координаты вектора. Операции поднятия и опускания индексов.

билет №32[править]

  1. Независимость определителя оператора от базиса. Теорема умножения определителей.
  2. Спектральная теорема и функциональное исчисление для скалярного оператора.
  3. Метрический тензор. Естественный изоморфизм евклидова и сопряженного ему пространств.

билет №33[править]

  1. Транспонирование тензора.
  2. Разложение линейного пространства в сумму подпространств. 2-я теорема о ядре и образе. Теорема о проекторах.
  3. Ортогональные системы векторов: коэффициенты Фурье, неравенство Бесселя, равенство Парсеваля.

билет №34[править]

  1. Определитель линейного оператора. Внешняя степень оператора.
  2. Структура нильпотентного оператора. Базис Жордана (обзор).
  3. Задача о перпендикуляре.

билет №35[править]

  1. Независимость определителя оператора от базиса. Теорема умножения определителей.
  2. Алгебра операторных полиномов. Минимальный полином линейного оператора.
  3. Ортогональная сумма подпространств. Ортогональный проектор.

билет №36[править]

  1. Тензоры (ковариантность, независимое от ПЛФ определение). Пространство тензоров.
  2. Жорданова форма матрицы линейного оператора
  3. Ортогональность. Ортогональный базис. Процесс ортогонализации Грама-Шмидта.

билет №37[править]

  1. Преобразование матрицы линейного оператора А при замене базиса. Преобразование подобия.
  2. Собственные векторы и собственные значения линейного оператора: существование, вычисление.
  3. Комплексное евклидово пространство. Основные неравенства.

билет №38[править]

  1. Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.
  2. Cпектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
  3. Вещественное евклидово и псевдоевклидово пространство. Основные неравенства.

билет №39[править]

  1. Транспонирование тензора.
  2. Алгебра скалярных полиномов. Идеал. Минимальный полином.
  3. Метрические, нормированные и евклидовы пространства

билет №40[править]

  1. Свертка тензора.
  2. Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.
  3. Квадратичные формы: закон инерции квадратичной формы.