Алгоритм Кока-Янгера-Касами разбора грамматики в НФХ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 23: Строка 23:
 
[[Файл:CYK_rule_2.jpg]]
 
[[Файл:CYK_rule_2.jpg]]
  
[[Категория: Теория формальных языков]]
 
[[Категория: Контекстно-свободные грамматики]]
 
 
*'''Завершение'''. После окончания работы ответ содержится в ячейке <tex>a_{S, 1, n}</tex>, где <tex>n = |w|</tex>.
 
*'''Завершение'''. После окончания работы ответ содержится в ячейке <tex>a_{S, 1, n}</tex>, где <tex>n = |w|</tex>.
  
Строка 46: Строка 44:
 
== См. также ==  
 
== См. также ==  
 
==Источники информации==
 
==Источники информации==
 +
 +
[[Категория:Дискретная математика и алгоритмы]]
 +
[[Категория:Динамическое программирование]]
 +
[[Категория: Теория формальных языков]]
 +
[[Категория: Контекстно-свободные грамматики]]

Версия 21:41, 4 ноября 2014

Задача:
Пусть дана контекстно-свободная грамматика грамматика [math]\Gamma[/math] в нормальной форме Хомского и слово [math]w \in \Sigma^{*}[/math]. Требуется выяснить, выводится ли это слово в данной грамматике.


Алгоритм

Описание

Пусть [math]a_{A, i, j} = true[/math], если из нетерминала [math]A[/math] можно вывести подстроку [math]w[i..j][/math]. Иначе [math]a_{A, i, j} = false[/math]:

[math]a_{A, i, j} = \begin{cases} true,&\text{$A \Rightarrow^{*} w[i..j]$;}\\ false,&\text{else.} \end{cases} [/math].

Будем динамически заполнять матрицу [math]a_{A, i, j}[/math] следующим алгоритмом (индукция по [math]m = j - i[/math]):

  • База. [math]m = 0[/math]. Ячейки [math]a_{A, i, i}[/math] заполняются значением [math]true[/math], если правило [math]A \rightarrow w[i][/math] принадлежит множеству правил [math]P[/math] грамматики [math]\Gamma[/math]: [math]a_{A, i, i} = \lbrack A \rightarrow w[i] \in P \rbrack[/math].
  • Переход. Рассмотрим все пары [math]\lbrace \langle j, i \rangle | j-i=m \rbrace[/math]. Значения для всех нетерминалов и пар [math]\lbrace \langle j', i' \rangle | j-i\lt m \rbrace[/math] уже вычислены, так что: [math]a_{A, i, j} = \bigvee\limits_{k=i}^{j-1} \bigvee\limits_{A \rightarrow BC} \left( a_{B, i, k} \wedge a_{C, k+1, j} \right)[/math].

CYK rule 2.jpg

  • Завершение. После окончания работы ответ содержится в ячейке [math]a_{S, 1, n}[/math], где [math]n = |w|[/math].

Псевдокод

Асимптотика

Необходимо вычислить [math]n^2[/math] булевых величин. На каждую требуется затратить [math]n \cdot |P_A|[/math] операций, где [math]|P_A|[/math] – количество правил. Суммируя по всем правилам получаем конечную сложность [math]O \left( n^3 \cdot |\Gamma| \right)[/math].

Алгоритму требуется [math]n^2 \cdot |N|[/math] памяти, где [math]|N|[/math] — количество нетерминалов грамматики.

Пусть, [math]n[/math] - длина входной строки, а [math]m[/math] - количество правил вывода в грамматике.

Обработка правил вида [math]A \rightarrow a_i[/math] выполняется за [math]O(nm)[/math].

Проход по всем подстрокам выполняется за [math]O(n^2)[/math]. В обработке подстроки присутствует цикл по всем правилам вывода и по всем разбиениям на две подстроки, следовательно обработка работает за [math]O(nm)[/math]. В итоге - [math]O(n^3 m)[/math].

Следовательно, общее время работы алгоритма - [math]O(n^3 m)[/math]. Кроме того, алгоритму требуется память (на массив [math]d[/math]) объемом [math]O(n^2 m)[/math].

Недостаток алгоритма заключается в том, что изначально грамматику необходимо привести к НФХ.

См. также

Источники информации