Редактирование: Алгоритм Краскала

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 2: Строка 2:
  
 
==Идея==
 
==Идея==
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), пытаясь на каждом шаге достроить <tex>F</tex> до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>E(G)</tex> в порядке неубывания весов ребер. Если очередное ребро <tex>e</tex> соединяет вершины одной компоненты связности <tex>F</tex>, то добавление его в остов приведет к возникновению цикла в этой компоненте связности. В таком случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. Иначе <tex>e</tex> соединяет разные компоненты связности <tex>F</tex>, тогда существует <tex> \langle S, T \rangle </tex> [[Лемма о безопасном ребре#Необходимые определения|разрез]] такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа — вторую. Тогда <tex>e</tex> — минимальное ребро, пересекающее этот разрез. Значит, из [[Лемма о безопасном ребре#Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>e</tex> является безопасным, поэтому добавим это ребро в <tex>F</tex>. На последнем шаге ребро соединит две оставшиеся компоненты связности, полученный подграф будет минимальным остовным деревом графа <tex>G</tex>.
+
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), пытаясь на каждом шаге достроить <tex>F</tex> до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>E(G)</tex> в порядке неубывания веса ребер. Если очередное ребро <tex>e</tex> соединяет вершины одной компоненты связности <tex>F</tex>, то добавление его в остов приведет к возникновению цикла в этой компоненте связности. В таком случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. Иначе <tex>e</tex> соединяет разные компоненты связности <tex>F</tex>, тогда существует <tex> \langle S, T \rangle </tex> [[Лемма о безопасном ребре#Необходимые определения|разрез]] такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа — вторую. Тогда <tex>e</tex> — минимальное ребро, пересекающее этот разрез. Значит, из [[Лемма о безопасном ребре#Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>e</tex> безопасное, поэтому добавим это ребро в <tex>F</tex>. На последнем шаге ребро соединит две оставшиеся компоненты связности, полученный подграф будет минимальным остовным деревом графа <tex>G</tex>.
Для проверки возможности добавления ребра используется  [[СНМ (реализация с помощью леса корневых деревьев) | система непересекающихся множеств]].
 
  
 
==Реализация==
 
==Реализация==
 
  <font color=green>// <tex>G</tex> {{---}} исходный граф</font>
 
  <font color=green>// <tex>G</tex> {{---}} исходный граф</font>
 
  <font color=green>// <tex>F</tex> {{---}} минимальный остов</font>
 
  <font color=green>// <tex>F</tex> {{---}} минимальный остов</font>
 +
<font color=green>// для проверки возможности добавления ребра используется система непересекающихся множеств</font>
 
  '''function''' <tex>\mathtt{kruskalFindMST}():</tex>
 
  '''function''' <tex>\mathtt{kruskalFindMST}():</tex>
 
     <tex> \mathtt{F} \leftarrow V(G)</tex>
 
     <tex> \mathtt{F} \leftarrow V(G)</tex>
Строка 13: Строка 13:
 
     '''for''' <tex>vu \in E(G)</tex>
 
     '''for''' <tex>vu \in E(G)</tex>
 
       '''if''' <tex>v</tex> и <tex>u</tex> в разных компонентах связности <tex>F</tex>
 
       '''if''' <tex>v</tex> и <tex>u</tex> в разных компонентах связности <tex>F</tex>
           <tex> \mathtt{F}\ =\ \mathtt{F} \bigcup vu\</tex>
+
           <tex> \mathtt{F}\ =\ \mathtt{F} \bigcup \mathtt{vu}\</tex>
    '''return''' <tex> \mathtt{F} </tex>
 
  
 
==Задача о максимальном ребре минимального веса==
 
==Задача о максимальном ребре минимального веса==
Легко показать, что максимальное ребро в MST минимально. Обратное в общем случае неверно. Но MST из-за сортировки строится за <tex>O(E \log E)</tex>. Однако из-за того, что необходимо минимизировать только максимальное ребро, а не сумму всех рёбер, можно предъявить алгоритм, решающий задачу за линейное время.
+
Очевидно, что максимальное ребро в MST минимально. Пусть это не так, тогда рассмотрим разрез, который оно пересекает. В этом разрезе должно быть ребро с меньшим весом, иначе максимальное ребро было бы минимальным, но в таком случае минимальный остов не является минимальным, следовательно, максимальное ребро в минимальном остовном дереве минимально. Если же максимальное ребро в остовном дереве минимально, то такое дерево может не быть минимальным. Зато его можно найти быстрее чем MST, а конкретно за <tex>O(E)</tex>. С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности так, чтобы в первом подмножестве все ребра не превосходили ребро-медиану, а во втором были не меньше его. Запустим [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]], чтобы проверить образуют ли ребра из первого подмножества остов, содержащий все вершины графа. Если да, то, так как все ребра в первом подмножестве меньше чем во втором, рекурсивно запустим алгоритм от него. В противном случае сконденсируем в супервершины получившиеся несвязные компоненты и рассмотрим граф с этими супервершинами и ребрами из второго подмножества. На последнем шаге ребро соединит две оставшиеся компоненты — это и будет максимальное ребро минимального веса. На каждом шаге ребер становится в два раза меньше, а все операции выполняются за время пропорциональное количеству ребер на текущем шаге, следовательно, время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>. Чтобы восстановить остовное дерево, достаточно запустить алгоритм поиска в глубину и добавлять в остов только те ребра, которые не превосходят найденное алгоритмом ребро.
 
 
С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности так, чтобы ребра в первом не превосходили по весу ребер во втором. Проверим образуют ли ребра из первого подмножества остов графа, запустив [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]].  
 
* Если да, то рекурсивно запустим алгоритм от него.
 
* В противном случае сконденсируем получившиеся несвязные компоненты в супервершины и рассмотрим граф с этими вершинами и ребрами из второго подмножества.
 
На последнем шаге останутся две компоненты связности и одно ребро в первом подмножестве — это максимальное ребро минимального веса.
 
 
 
На каждом шаге ребер становится в два раза меньше, а все операции выполняются за время пропорциональное количеству ребер на текущем шаге, тогда время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>.
 
  
 
==Пример==
 
==Пример==
 +
Задан неориентированный связный граф, требуется построить в нём минимальное остовное дерево.<br/>
 +
Создадим новый граф, содержащий все вершины из заданного графа, но не содержащий рёбер.<br/>
 +
Этот новый граф будет ответом, в него будут добавлены рёбра из заданного графа по ходу выполнения алгоритма.<br/>
 +
Отсортируем рёбра заданного графа по их весам и рассмотрим их в порядке возрастания.
 
{| class = "wikitable"
 
{| class = "wikitable"
 
| Рёбра ''(в порядке их просмотра)'' || ae || cd || ab || be || bc || ec || ed
 
| Рёбра ''(в порядке их просмотра)'' || ae || cd || ab || be || bc || ec || ed
Строка 66: Строка 62:
 
==Асимптотика==
 
==Асимптотика==
 
Сортировка <tex>E</tex> займет <tex>O(E\log E)</tex>.<br>
 
Сортировка <tex>E</tex> займет <tex>O(E\log E)</tex>.<br>
Работа с СНМ займет <tex>O(E\alpha(V))</tex>, где <tex>\alpha</tex> — обратная функция Аккермана, которая не превосходит <tex>4</tex> во всех практических приложениях и которую можно принять за константу.<br>
+
Работа с [[СНМ (реализация с помощью леса корневых деревьев) | системой непересекающихся множеств]] займет <tex>O(E\alpha(V))</tex>, где <tex>\alpha</tex> — обратная функция Аккермана, которая не превосходит 4 во всех практических приложениях и которую можно принять за константу.<br>
 
Алгоритм работает за <tex>O(E(\log E+\alpha(V))) = O(E\log E)</tex>.
 
Алгоритм работает за <tex>O(E(\log E+\alpha(V))) = O(E\log E)</tex>.
  
Строка 81: Строка 77:
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Остовные деревья]]
+
[[Категория: Остовные деревья ]]
[[Категория: Построение остовных деревьев]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: