Редактирование: Алгоритм Краскала

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 3: Строка 3:
 
==Идея==
 
==Идея==
 
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), пытаясь на каждом шаге достроить <tex>F</tex> до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>E(G)</tex> в порядке неубывания весов ребер. Если очередное ребро <tex>e</tex> соединяет вершины одной компоненты связности <tex>F</tex>, то добавление его в остов приведет к возникновению цикла в этой компоненте связности. В таком случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. Иначе <tex>e</tex> соединяет разные компоненты связности <tex>F</tex>, тогда существует <tex> \langle S, T \rangle </tex> [[Лемма о безопасном ребре#Необходимые определения|разрез]] такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа — вторую. Тогда <tex>e</tex> — минимальное ребро, пересекающее этот разрез. Значит, из [[Лемма о безопасном ребре#Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>e</tex> является безопасным, поэтому добавим это ребро в <tex>F</tex>. На последнем шаге ребро соединит две оставшиеся компоненты связности, полученный подграф будет минимальным остовным деревом графа <tex>G</tex>.
 
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), пытаясь на каждом шаге достроить <tex>F</tex> до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>E(G)</tex> в порядке неубывания весов ребер. Если очередное ребро <tex>e</tex> соединяет вершины одной компоненты связности <tex>F</tex>, то добавление его в остов приведет к возникновению цикла в этой компоненте связности. В таком случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. Иначе <tex>e</tex> соединяет разные компоненты связности <tex>F</tex>, тогда существует <tex> \langle S, T \rangle </tex> [[Лемма о безопасном ребре#Необходимые определения|разрез]] такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа — вторую. Тогда <tex>e</tex> — минимальное ребро, пересекающее этот разрез. Значит, из [[Лемма о безопасном ребре#Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>e</tex> является безопасным, поэтому добавим это ребро в <tex>F</tex>. На последнем шаге ребро соединит две оставшиеся компоненты связности, полученный подграф будет минимальным остовным деревом графа <tex>G</tex>.
Для проверки возможности добавления ребра используется  [[СНМ (реализация с помощью леса корневых деревьев) | система непересекающихся множеств]].
 
  
 
==Реализация==
 
==Реализация==
 
  <font color=green>// <tex>G</tex> {{---}} исходный граф</font>
 
  <font color=green>// <tex>G</tex> {{---}} исходный граф</font>
 
  <font color=green>// <tex>F</tex> {{---}} минимальный остов</font>
 
  <font color=green>// <tex>F</tex> {{---}} минимальный остов</font>
 +
<font color=green>// для проверки возможности добавления ребра используется система непересекающихся множеств</font>
 
  '''function''' <tex>\mathtt{kruskalFindMST}():</tex>
 
  '''function''' <tex>\mathtt{kruskalFindMST}():</tex>
 
     <tex> \mathtt{F} \leftarrow V(G)</tex>
 
     <tex> \mathtt{F} \leftarrow V(G)</tex>
Строка 19: Строка 19:
 
Легко показать, что максимальное ребро в MST минимально. Обратное в общем случае неверно. Но MST из-за сортировки строится за <tex>O(E \log E)</tex>. Однако из-за того, что необходимо минимизировать только максимальное ребро, а не сумму всех рёбер, можно предъявить алгоритм, решающий задачу за линейное время.
 
Легко показать, что максимальное ребро в MST минимально. Обратное в общем случае неверно. Но MST из-за сортировки строится за <tex>O(E \log E)</tex>. Однако из-за того, что необходимо минимизировать только максимальное ребро, а не сумму всех рёбер, можно предъявить алгоритм, решающий задачу за линейное время.
  
С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности так, чтобы ребра в первом не превосходили по весу ребер во втором. Проверим образуют ли ребра из первого подмножества остов графа, запустив [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]].  
+
Описанный далее алгоритм ищет максимальное ребро минимального веса и одновременно строит остовное дерево. С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности подмножества. Запустим [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]], чтобы проверить образуют ли ребра из первого подмножества остов графа.  
* Если да, то рекурсивно запустим алгоритм от него.
+
* Если да, то все безопасные ребра находятся в первом подмножестве, рекурсивно запустим алгоритм от него.
* В противном случае сконденсируем получившиеся несвязные компоненты в супервершины и рассмотрим граф с этими вершинами и ребрами из второго подмножества.
+
* В противном случае часть безопасных ребер, включая ребро, которое мы ищем, находится во втором подмножестве. Просмотрим ребра из первого подмножества, если текущее ребро соединяет разные компоненты связности (проверим с помощью [[СНМ (реализация с помощью леса корневых деревьев) | СНМ]] за <tex>O(1)</tex>), то добавим его в остов. Запустим алгоритм от несвязных компонент и ребер второго подмножества.
На последнем шаге останутся две компоненты связности и одно ребро в первом подмножестве — это максимальное ребро минимального веса.
+
На последнем шаге останутся две компоненты связности и одно ребро в первом подмножестве — это максимальное ребро минимального веса, добавим его в остов. Получившийся остов может не быть минимальным, но все ребра в нем не превосходят по весу ребра, которое мы нашли.
  
 
На каждом шаге ребер становится в два раза меньше, а все операции выполняются за время пропорциональное количеству ребер на текущем шаге, тогда время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>.
 
На каждом шаге ребер становится в два раза меньше, а все операции выполняются за время пропорциональное количеству ребер на текущем шаге, тогда время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>.
Строка 66: Строка 66:
 
==Асимптотика==
 
==Асимптотика==
 
Сортировка <tex>E</tex> займет <tex>O(E\log E)</tex>.<br>
 
Сортировка <tex>E</tex> займет <tex>O(E\log E)</tex>.<br>
Работа с СНМ займет <tex>O(E\alpha(V))</tex>, где <tex>\alpha</tex> — обратная функция Аккермана, которая не превосходит <tex>4</tex> во всех практических приложениях и которую можно принять за константу.<br>
+
Для проверки возможности добавления ребра используется система непересекающихся множеств, работа с ней займет <tex>O(E\alpha(V))</tex>, где <tex>\alpha</tex> — обратная функция Аккермана, которая не превосходит <tex>4</tex> во всех практических приложениях и которую можно принять за константу.<br>
 
Алгоритм работает за <tex>O(E(\log E+\alpha(V))) = O(E\log E)</tex>.
 
Алгоритм работает за <tex>O(E(\log E+\alpha(V))) = O(E\log E)</tex>.
  
Строка 81: Строка 81:
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Остовные деревья]]
+
[[Категория: Остовные деревья ]]
[[Категория: Построение остовных деревьев]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: