Алгоритм Фарака-Колтона и Бендера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(Текст, кажется, готов)
Строка 1: Строка 1:
'''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи LCA]].
+
'''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1 за <tex><O(N),O(1)></tex> времени. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи LCA]].
  
 
'''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>.<br/>
 
'''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>.<br/>
 
'''Выход:''' ответы на онлайн запросы вида «минимум на отрезке <tex>[i:j]</tex>».
 
'''Выход:''' ответы на онлайн запросы вида «минимум на отрезке <tex>[i:j]</tex>».
  
== На пути к успеху ==
+
== Алгоритм ==
[[Файл:Sparse_table.png|right|thumb|Построение таблицы <tex>M_i^k</tex>]]
+
Данный алгоритм основывается на методе решения задачи RMQ с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex><O(N \log N),O(1)></tex>.
  
Начнём с рассмотрения '''алгоритма решения общей задачи RMQ''', требующего <tex>O(log N)</tex> времени на предварительную обработку данных и <tex>O(1)</tex> времени для ответа на каждый запрос.
+
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>a_i</tex> на блоки длины <tex>\frac{\log_2 N}{2}</tex>. Для каждого блока вычислим минимум на нём и определим <tex>b_i</tex> как позицию минимального элемента в <tex>i</tex>-том блоке.
  
Основная идея заключается в том, чтобы предподсчитать ответы для отрезков, длины которых являются степенями двойки. То есть <tex>M_i^k = min\{a_i, .., a_{i+2^k}\}</tex> — минимум на отрезке длины <tex>2^k</tex>, начинающемся в позиции <tex>i</tex>. Таким образом, таблица <tex>M</tex> имеет размер <tex>O(N logN)</tex>. Заполнить эту таблицу можно за <tex>O(N logN)</tex> динамически, если заметить, что <tex>M_i^0 = a_i</tex> и <tex>M_i^k = min\{M_i^{k-1}, M_{i+2^{k-1}}^{k-1}\}</tex> ''(см. картинку)''.
+
На новой последовательности <tex>b_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос RMQ<tex>[i:j]</tex> нам необходимо вычислить следующее:
 +
# Минимум на отрезке от <tex>i</tex> до конца содержащего <tex>i</tex> блока.
 +
# Минимум по всем блокам, находящимся между блоками, содержащими <tex>i</tex> и <tex>j</tex>.
 +
# Минимум от начала блока, содержащего <tex>j</tex>, до <tex>j</tex>.
 +
Ответом на запрос будет позиция меньшего из эти трёх элементов.
  
Пусть теперь необходимо вычислить минимум на отрезке <tex>[i:j]</tex>. Для этого мы покроем этот отрезок двумя отрезками длины <tex>2^k</tex> (где <tex>k = \lfloor log_2(j-i) \rfloor</tex>) так, чтобы первый отрезок начинался в <tex>i</tex>, а второй заканчивался в <tex>j</tex>. Отрезки, разумеется, будут пересекаться, то это никак не помешает. В этом случае искомый минимум можно найти за константное время как минимум на этих двух покрывающих отрезках, т.е. <tex>min([i:j]) = min\{M_i^k, M_{j-2^k}^k\}</tex>.
+
Второй элемент мы уже умеем находить за <tex>O(1)</tex> с помощью <tex>b_i</tex> и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.
  
 +
{{Утверждение
 +
|id=sameblocks
 +
|statement=Если две последовательности <tex>x_i</tex> и <tex>y_i</tex> таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. <tex>\forall k: x_k = y_k + C</tex>), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей.
 +
}}
 +
 +
Таким образом, мы может ''нормализовать'' блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
 +
 +
{{Утверждение
 +
|id=kindscount
 +
|statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков.
 +
|proof=Соседние элементы в блоках отичаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины <tex>(\frac{\log_2 N}{2}) - 1</tex>. Таких векторов <tex>2^{(1/2 \cdot \log_2 N) - 1} = O(\sqrt N)</tex>.
 +
}}
 +
 +
Осталось создать <tex>O(\sqrt N)</tex> таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы, коих <tex>(\frac{\log_2 N}{2})^2 = O(\log^2 N)</tex>. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за <tex>O(1)</tex>, затратив на предподсчёт <tex>O(\sqrt N \log^2 N)</tex> времени. Для каждого блока в <tex>b_i</tex> необходимо заранее вычислить его тип.
 +
 +
=== Результат ===
 +
Итого, на предподсчёт требуется <tex>O(N)</tex> времени и памяти, а ответ на запрос вычисляется за <tex>O(1)</tex>.
 +
 +
== См. также ==
 +
* [[Решение RMQ с помощью разреженной таблицы]]
 +
* [[Сведение задачи RMQ к задаче LCA]]
 +
* [[Сведение задачи LCA к задаче RMQ]]
  
 
== Ссылки ==
 
== Ссылки ==
* M. A. Bender and M. Farach-Colton. "The LCA Problem Revisited" LATIN, pages 88-94, 2000
+
* M. A. Bender and M. Farach-Colton. “The LCA Problem Revisited” LATIN, pages 88-94, 2000

Версия 21:51, 9 мая 2011

Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1 за [math]\lt O(N),O(1)\gt [/math] времени. Может быть использован также для решения задачи LCA.

Вход: последовательность [math]a_i[/math] длины [math]N[/math].
Выход: ответы на онлайн запросы вида «минимум на отрезке [math][i:j][/math]».

Алгоритм

Данный алгоритм основывается на методе решения задачи RMQ с помощью разреженной таблицы (sparse table, ST) за [math]\lt O(N \log N),O(1)\gt [/math].

Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность [math]a_i[/math] на блоки длины [math]\frac{\log_2 N}{2}[/math]. Для каждого блока вычислим минимум на нём и определим [math]b_i[/math] как позицию минимального элемента в [math]i[/math]-том блоке.

На новой последовательности [math]b_i[/math] построим разреженную таблицу. Теперь для ответа на запрос RMQ[math][i:j][/math] нам необходимо вычислить следующее:

  1. Минимум на отрезке от [math]i[/math] до конца содержащего [math]i[/math] блока.
  2. Минимум по всем блокам, находящимся между блоками, содержащими [math]i[/math] и [math]j[/math].
  3. Минимум от начала блока, содержащего [math]j[/math], до [math]j[/math].

Ответом на запрос будет позиция меньшего из эти трёх элементов.

Второй элемент мы уже умеем находить за [math]O(1)[/math] с помощью [math]b_i[/math] и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.

Утверждение:
Если две последовательности [math]x_i[/math] и [math]y_i[/math] таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. [math]\forall k: x_k = y_k + C[/math]), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей.

Таким образом, мы может нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.

Утверждение:
Существует [math]O(\sqrt N)[/math] различных типов нормализованных блоков.
[math]\triangleright[/math]
Соседние элементы в блоках отичаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины [math](\frac{\log_2 N}{2}) - 1[/math]. Таких векторов [math]2^{(1/2 \cdot \log_2 N) - 1} = O(\sqrt N)[/math].
[math]\triangleleft[/math]

Осталось создать [math]O(\sqrt N)[/math] таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы, коих [math](\frac{\log_2 N}{2})^2 = O(\log^2 N)[/math]. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за [math]O(1)[/math], затратив на предподсчёт [math]O(\sqrt N \log^2 N)[/math] времени. Для каждого блока в [math]b_i[/math] необходимо заранее вычислить его тип.

Результат

Итого, на предподсчёт требуется [math]O(N)[/math] времени и памяти, а ответ на запрос вычисляется за [math]O(1)[/math].

См. также

Ссылки

  • M. A. Bender and M. Farach-Colton. “The LCA Problem Revisited” LATIN, pages 88-94, 2000