Редактирование: Алгоритм Флойда

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
'''Алгоритм Флойда (алгоритм Флойда–Уоршелла)''' {{---}} алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Алгоритм работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^2) </tex> памяти. Разработан в 1962 году.
+
'''Алгоритм Флойда (алгоритм Флойда–Уоршелла)''' {{---}} алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Этот алгоритм работает в течение времени <tex> \Theta(n^3) </tex> и использует <tex> \Theta(n^2) </tex> памяти. Разработан в 1962 году.
  
 
== Алгоритм ==
 
== Алгоритм ==
 +
[[Файл:Floyd.png|right|thumb|Текущий (синий) путь и потенциально более короткий (красный)]]
  
 
=== Постановка задачи ===
 
=== Постановка задачи ===
[[Файл:Floyd_first.png|right|thumb|180px|Текущий (синий) путь и потенциально более короткий (красный)]]
 
  
Дан взвешенный ориентированный [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|граф]] <tex> G(V, E) </tex>, в котором вершины пронумерованы от <tex>1</tex> до <tex>n</tex>.
+
Дан взвешенный ориентированный граф <tex> G(V, E) </tex>; <tex>\omega_{uv} =
 
 
<tex>\omega_{uv} =
 
 
\begin{cases}
 
\begin{cases}
 
\text{weight of }uv ,& \text{if } uv \in E \\
 
\text{weight of }uv ,& \text{if } uv \in E \\
 
+\infty ,& \text{if } uv \notin E
 
+\infty ,& \text{if } uv \notin E
\end{cases}</tex><br>Требуется найти матрицу кратчайших расстояний <tex> d </tex>, в которой элемент <tex> d_{ij} </tex> либо равен длине кратчайшего пути из <tex> i </tex> в <tex> j </tex>, либо равен <tex> +\infty </tex>, если вершина <tex> j </tex> не достижима из <tex> i </tex>.
+
\end{cases}</tex>, в котором вершины пронумерованы от <tex>1</tex> до <tex>n</tex>. Требуется найти матрицу кратчайших расстояний <tex> d </tex>, в которой элемент <tex> d_{ij} </tex> либо равен длине кратчайшего пути из <tex> i </tex> в <tex> j </tex>, либо равен <tex> +\infty </tex>, если вершина <tex> j </tex> не достижима из <tex> i </tex>.
  
 
=== Описание ===
 
=== Описание ===
Строка 18: Строка 16:
 
Обозначим длину кратчайшего пути между вершинами <tex> u </tex> и <tex> v </tex>, содержащего, помимо <tex>u</tex> и <tex>v</tex>, только вершины из множества <tex> \{ 1 .. i \} </tex> как <tex>d_{uv}^{(i)}</tex>, <tex>d_{uv}^{(0)} = \omega_{uv}</tex>.
 
Обозначим длину кратчайшего пути между вершинами <tex> u </tex> и <tex> v </tex>, содержащего, помимо <tex>u</tex> и <tex>v</tex>, только вершины из множества <tex> \{ 1 .. i \} </tex> как <tex>d_{uv}^{(i)}</tex>, <tex>d_{uv}^{(0)} = \omega_{uv}</tex>.
  
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер {{---}} <tex> i </tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex> d_{uv}^{(i)} = \min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) </tex>. То есть, если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex>, проходит через вершину <tex>i</tex>, то кратчайшим путем из <tex> u </tex> в <tex> v </tex> является кратчайший путь из <tex> u </tex> в <tex> i </tex>, объединенный с кратчайшим путем из <tex> i </tex> в <tex> v </tex>. В противном случае, когда этот путь не содержит вершины <tex> i </tex>, кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex> является кратчайшим путем из <tex>u</tex> в <tex>v</tex>, содержащим только вершины из множества <tex> \{ 1 .. i-1 \} </tex>.
+
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер {{---}} <tex> i </tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex> d_{uv}^{(i)} = min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) </tex>. То есть, если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex>, проходит через вершину <tex>i</tex>, то кратчайшим путем из <tex> u </tex> в <tex> v </tex> является кратчайший путь из <tex> u </tex> в <tex> i </tex>, объединенный с кратчайшим путем из <tex> i </tex> в <tex> v </tex>. В противном случае, когда этот путь не содержит вершины <tex> i </tex>, кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex> является кратчайшим путем из <tex>u</tex> в <tex>v</tex>, содержащим только вершины из множества <tex> \{ 1 .. i-1 \} </tex>.
  
 
=== Код (в первом приближении) ===
 
=== Код (в первом приближении) ===
<tex>d^{(0)}_{uv} = w</tex>
+
  # Инициализация
'''for''' <tex>i \in V</tex>
+
  <tex dpi = "105"> d^{(0)} = w </tex>
    '''for''' <tex>u \in V</tex>
+
  # Основная часть
        '''for''' <tex>v \in V</tex>
+
  for i in {1..n}:
            <tex> d^{(i)}_{uv} = \min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) </tex>
+
    for u in {1..n}:
 
+
      for v in {1..n}:
 +
        <tex dpi = "105" > d^{(i)}_{uv} = min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) </tex>
 +
 
В итоге получаем, что матрица <tex> d^{(n)} </tex> и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества <tex> \{ 1..n \} </tex>, что есть попросту все вершины графа. Такая реализация работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^3) </tex> памяти.
 
В итоге получаем, что матрица <tex> d^{(n)} </tex> и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества <tex> \{ 1..n \} </tex>, что есть попросту все вершины графа. Такая реализация работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^3) </tex> памяти.
  
 
=== Код (окончательный) ===
 
=== Код (окончательный) ===
Утверждается, что можно избавиться от одной размерности в массиве <tex> d </tex>, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}</tex>, а, поскольку, после выполнения работы алгоритма <tex> \rho(u, v) = d_{uv}^{(i)} </tex>, то тогда будет выполняться и <tex> \rho(u, v) = d_{uv} </tex>.
+
Утверждается, что можно избавиться от одной размерности в массиве <tex> d </tex>, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \le d_{uv} \le d_{uv}^i</tex>, а значит <tex>d_{uv}</tex> тоже в итоге сойдутся к решению.
 
 
{{Утверждение
 
|statement=
 
В течение работы алгоритма Флойда выполняются неравенства: <tex>\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}</tex>.
 
|proof=
 
 
 
После инициализации все неравенства, очевидно, выполняются. Далее, массив <tex> d </tex> может измениться только в строчке 5.
 
 
 
'''Докажем второе неравенство индукцией по итерациям алгоритма.'''
 
 
 
Пусть также <tex>d'_{uv}</tex> {{---}} значение <tex>d_{uv}</tex> сразу после <tex>i - 1</tex> итерации.
 
 
 
Покажем, что <tex> d_{uv} \leqslant d_{uv}^{(i)} </tex>, зная, что <tex> d'_{uv} \leqslant d_{uv}^{(i - 1)} </tex>.
 
 
 
Рассмотрим два случая:
 
* Значение <tex> d_{uv}^{(i)} </tex> стало меньше, чем <tex> d_{uv}^{(i - 1)} </tex>. Тогда <tex> d_{uv}^{(i)} = d_{ui}^{(i-1)} + d_{iv}^{(i-1)} \geqslant </tex> (выполняется на шаге <tex> i - 1 </tex>, по индукционному  предположению) <tex> \geqslant d'_{ui}  + d'_{iv} \ge</tex> (в силу выполнения 7-ой строчки алгоритма на <tex>i</tex>-ой итерации и невозрастания элементов массива <tex> d </tex>) <tex>\geqslant d_{uv}</tex>.
 
* В ином случае всё очевидно: <tex> d_{uv}^{(i)} = d_{uv}^{(i - 1)} \geqslant d'_{uv} \geqslant d_{uv} </tex>, и неравенство тривиально.
 
 
 
 
 
'''Докажем первое неравенство от противного.'''
 
  
Пусть неравенство было нарушено, рассмотрим момент, когда оно было нарушено впервые. Пусть это была <tex>i</tex>-ая итерация и в этот момент изменилось значение <tex>d_{uv}</tex> и выполнилось  <tex>\rho(u,v) > d_{uv}</tex>. Так как <tex>d_{uv}</tex> изменилось, то <tex>d_{uv} = d_{ui} + d_{iv} \ge</tex> (так как ранее <tex>\forall u, v \in V: \rho(u,v) \leqslant d_{uv}</tex>) <tex>\geqslant \rho(u, i) + \rho(i, v) \ge</tex> (по неравенству треугольника) <tex>\geqslant \rho(u, v)</tex>.
+
  # Инициализация
Итак <tex>d_{uv} \geqslant \rho(u,v)</tex> {{---}} противоречие.
+
  d = w
}}
+
  # Основная часть
 +
  for i in {1..n}:
 +
    for u in {1..n}:
 +
      for v in {1..n}:
 +
        d[u][v] = min(d[u][v], d[u][i] + d[i][v])
  
'''func''' floyd(w)''':'''
+
Алгоритм всегда завершит работу за <tex>O(V^3)</tex> — как несложно видеть, три вложенных цикла выполняются по <tex>n</tex> раз каждый.
    d = <tex>\omega</tex>                <font color="green">// изначально <tex>d = \omega</tex></font>
 
    '''for''' <tex>i \in V</tex>
 
        '''for''' <tex>u \in V</tex>
 
            '''for''' <tex>v \in V</tex>
 
                d[u][v] = min(d[u][v], d[u][i] + d[i][v])
 
 
 
Данная реализация работает за время <tex> \Theta(n^3) </tex>, но требует уже <tex> \Theta(n^2) </tex> памяти. В целом, алгоритм Флойда очень прост, и, поскольку в нем используются только простые операции, константа, скрытая в определении <tex> \Theta </tex> весьма мала.
 
  
 
=== Пример работы ===
 
=== Пример работы ===
{|class = "wikitable" style="text-align:center;"
+
{|style="text-align:center;"
 
| <tex>i = 0</tex> ||  <tex>i = 1</tex> ||  <tex>i = 2</tex> ||  <tex>i = 3 </tex> || <tex>i = 4</tex>
 
| <tex>i = 0</tex> ||  <tex>i = 1</tex> ||  <tex>i = 2</tex> ||  <tex>i = 3 </tex> || <tex>i = 4</tex>
 
|-
 
|-
|width = "180px"| [[Файл:0.png|170px]] ||width = "180px"|[[Файл:Floyd_1.png|170px]] ||width = "180px"|[[Файл:Floyd_2.png|170px]] ||width = "180px"|[[Файл:Floyd_algo_3.png|170px]] ||width = "180px"|[[Файл:Floyd_4.png|170px]]
+
| [[Файл:Floyd_step0.png]] || [[Файл:Floyd_step1.png]] || [[Файл:Floyd_step2.png]] || [[Файл:Floyd_step3.png]] || [[Файл:Floyd_step4.png]]
 
|-
 
|-
 
| <tex>\begin{pmatrix}
 
| <tex>\begin{pmatrix}
Строка 104: Строка 81:
  
 
== Вывод кратчайшего пути ==
 
== Вывод кратчайшего пути ==
Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив <tex>next</tex>, в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из <tex>u</tex> в <tex>v</tex> по кратчайшему пути.
+
Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив <tex>t_{uv}</tex>, в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из <tex>u</tex> в <tex>v</tex> по кратчайшему пути.
  
 
=== Модифицированный алгоритм ===
 
=== Модифицированный алгоритм ===
'''func''' floyd(w)''':'''
+
 
    d = <tex>\omega</tex>              <font color="green">// изначально <tex>d = \omega</tex></font>
+
  # Инициализация
    '''for''' <tex>i \in V</tex>
+
  d = w
        '''for''' <tex>u \in V</tex>
+
  t[u][v] = v если есть ребро uv
            '''for''' <tex>v \in V</tex>
+
  # Основная часть
                '''if''' d[u][i] + d[i][v] < d[u][v]
+
  for i in {1..n}:
                    d[u][v] = d[u][i] + d[i][v]
+
    for u in {1..n}:
                    next[u][v] = next[u][i]
+
      for v in {1..n}:
 
+
        if (d[u][i] + d[i][v]) < d[u][v]:
'''func''' getShortestPath(u, v)''':'''
+
          d[u][v] = d[u][i] + d[i][v]
    '''if''' d[u][v] == <tex>\infty</tex>
+
          t[u][v] = t[u][i]
        '''print''' "No path found"                <font color="green">// между вершинами u и v нет пути</font>
 
    c = u
 
    '''while''' c != v
 
        '''print''' c
 
        c = next[c][v]
 
    '''print''' v
 
 
 
== Нахождение отрицательного цикла ==
 
{{Утверждение
 
|statement=
 
При наличии цикла отрицательного веса в матрице <tex> D </tex> появятся отрицательные числа на главной диагонали.
 
|proof=
 
Так как алгоритм Флойда последовательно релаксирует расстояния между всеми парами вершин <tex>(i, j)</tex>, в том числе и теми, у которых <tex>i = j</tex>, а начальное расстояние между парой вершин <tex>(i, i)</tex> равно нулю, то релаксация может произойти только при наличии вершины <tex> k </tex> такой, что <tex> d[i][k] + d[k][i] < 0 </tex>, что эквивалентно наличию отрицательного цикла, проходящего через вершину <tex> i </tex>.
 
}}
 
Из доказательства следует, что для поиска цикла отрицательного веса необходимо, после завершения работы алгоритма, найти вершину <tex> i </tex>, для которой <tex> d[i][i] < 0 </tex>, и вывести кратчайший путь между парой вершин <tex> (i, i) </tex>. При этом стоит учитывать, что при наличии отрицательного цикла расстояния могут уменьшаться экспоненциально. Для предотвращения переполнения все вычисления стоит ограничивать снизу величиной <tex>-\infty</tex>, либо проверять наличие отрицательных чисел на главной диагонали во время подсчета.
 
 
 
== Построение транзитивного замыкания ==
 
Сформулируем нашу задачу в терминах графов: рассмотрим граф <tex>G=(V,\; E),\; |V| = n</tex>, соответствующий отношению <tex>R</tex>. Тогда необходимо найти все пары вершин <tex>(x, y) </tex>, соединенных некоторым путем.
 
Иными словами, требуется построить новое отношение <tex>T</tex>, которое будет состоять из всех пар <tex>(x, y) </tex> таких, что найдется последовательность <tex>x = x_0, x_1, \dots, x_k = y </tex>, где <tex> (x_{i-1}, x_i) \in R, i = 1, 2, \dots, k </tex>.
 
 
 
=== Псевдокод ===
 
Изначально матрица <tex>W</tex> заполняется соответственно отношению <tex>R</tex>, то есть <tex>W[i][j] = [(i, j) \in R] </tex>. Затем внешним циклом перебираются все элементы <tex>k</tex> множества <tex>X</tex> и для каждого из них, если он может использоваться, как промежуточный для соединения двух элементов <tex>i</tex> и <tex>j</tex>, отношение <tex>T</tex> расширяется добавлением в него пары <tex>(i, j)</tex>.
 
  
'''for''' k = 1 '''to''' n
+
  # Вывод кратчайшего пути
    '''for''' i = 1 '''to''' n
+
  def get_shortest_path(u, v):
        '''for''' j = 1 '''to''' n
+
    if d[u][v] == inf:
            W[i][j] = W[i][j] '''or''' (W[i][k] '''and''' W[k][j])
+
        raise NoPath # Из u в v пути нет
=== Доказательство === 
+
    c = u
<wikitex>Назовем ''промежуточной'' вершину некоторого пути $p = \left \langle v_0, v_1, \dots, v_k \right \rangle$, принадлежащую множеству вершин этого пути и отличающуюся от начальной и конечной вершин, то есть принадлежащую $\left \{ v_1, v_2, \dots, v_{k-1} \right \}$. Рассмотрим произвольную пару вершин $i, j \in V$ и все пути между ними, промежуточные вершины которых принадлежат множеству вершин с номерами $\left \{ 1, 2, \dots, k \right \}$. Пусть $p$ {{---}} некоторый из этих путей. Докажем по индукции (по числу промежуточных вершин в пути), что после $i$-ой итерации внешнего цикла будет верно утверждение {{---}} если в построенном графе между выбранной парой вершин есть путь, содержащий в качестве промежуточных только вершины из множества вершин с номерами $\left \{ v_1, v_2, \dots, v_{i} \right \}$, то между ними будет ребро.
+
    while c != v:
 
+
      yield c
* База индукции. Если у нас нет промежуточных вершин, что соответствует начальной матрице смежности, то утверждение выполнено: либо есть ребро (путь не содержит промежуточных вершин), либо его нет.
+
      c = t[c][v]
* Индуктивный переход. Пусть предположение выполнено для $i = k - 1$. Докажем, что оно верно и для $i = k$ Рассмотрим случаи (далее под вершиной будем понимать ее номер для простоты изложения):
+
    yield v
** $k$ не является промежуточной вершиной пути $p$. Тогда все его промежуточные пути принадлежат множеству вершин с номерами $\left \{ 1, 2, \dots, k-1 \right \} \subset \left \{ 1, 2, \dots, k \right \}$, то есть существует путь с промежуточными вершинами в исходном множестве. Это значит $W[i][j]$ будет истиной. В противном случае $W[i][j]$ будет ложью и на k-ом шаге ею и останется.
 
** $k$ является промежуточной вершиной предполагаемого пути $p$. Тогда этот путь можно разбить на два пути: $i \xrightarrow{p_1} k \xrightarrow{p_2} j$. Пусть как $p_1$, так и $p_2$ существуют. Тогда они содержат в качестве промежуточных вершины из множества $\left \{ 1, 2, \dots, k-1 \right \} \subset \left \{ 1, 2, \dots, k \right \}$ (так как вершина $k$ {{---}} либо конечная, либо начальная, то она не может быть в множестве по нашему определению). Тогда $W[i][k]$ и $W[k][j]$ истинны и по индуктивному предположению посчитаны верно. Тогда и $W[i][j]$ тоже истина. Пусть какого-то пути не существует. Тогда пути $p$ тоже не может существовать, так как добраться, например, от вершины $i$ до $k$ по вершинам из множества $\left \{ 1, 2, \dots, k \right \}$ невозможно по индуктивному предположению. Тогда вся конъюнкция будет ложной, то есть такого пути нет, откуда $W[i][j]$ после итерации будет ложью.
 
 
 
Таким образом, после завершения внешнего цикла у нас будет $W[i][j] = true$, если между этими вершинами есть путь, содержащий в качестве промежуточных вершин из множества всех остальных вершин графа, что и есть транзитивное замыкание.
 
</wikitex>
 
=== Оптимизация с помощью битовых масок ===
 
Строки матрицы <tex>W</tex> можно хранить с помощью массива битовых масок длиной <tex>k</tex>. Тогда последний цикл будет выполняться в <tex>k</tex> раз быстрее и сложность алгоритма снижается до <tex>O\Big(\dfrac{n^3}{k}\Big)</tex>. <br>
 
Пример реализации оптимизации с помощью битмасок:
 
 
'''unsigned int''' W[N][N / 32 + 1]         
 
 
'''func''' transitiveClosure(W)''':'''
 
    '''for''' k = 1 '''to''' n
 
        '''for''' i = 1 '''to''' n
 
            '''if''' бит с номером ''(k % 32)'' в маске ''a[i][k / 32]'' единичный
 
                '''for''' j = 1 '''to''' n / 32 + 1
 
                    W[i][j] = W[i][j] '''or''' W[k][j]
 
  
В данной реализации длина битовой маски <tex>k</tex> равна <tex>32</tex> битам. Последний цикл делает в <tex>32</tex> раза меньше операций {{---}} сложность алгоритма <tex>O\Big(\dfrac{n^3}{32}\Big)</tex>.
+
[[Файл:Floyd_path.png]]
  
== Источники информации ==
+
== Литература ==
* Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ 2-е изд — М.: Издательский дом «Вильямс», 2009. — ISBN 978-5-8459-0857-5.
+
* ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
* Романовский И. В. Дискретный анализ: Учебное пособие для студентов, специализирующихся по прикладной математике и информатике. Изд. 3-е. — СПб.: Невский диалект, 2003. — 320 с. — ISBN 5-7940-0114-3.
 
* [https://ru.wikipedia.org/wiki/Алгоритм_Флойда_—_Уоршелла Википедия - Алгоритм Флойда — Уоршелла]
 
* [https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm Wikipedia - Floyd–Warshall algorithm]
 
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Кратчайшие пути в графах ]]
 
[[Категория: Кратчайшие пути в графах ]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: