Алгоритм Флойда — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Картинки)
Строка 16: Строка 16:
 
Обозначим длину кратчайшего пути между вершинами <tex> u </tex> и <tex> v </tex>, содержащего, помимо <tex>u</tex> и <tex>v</tex>, только вершины из множества <tex> \{ 1 .. i \} </tex> как <tex>d_{uv}^{(i)}</tex>, <tex>d_{uv}^{(0)} = \omega_{uv}</tex>.
 
Обозначим длину кратчайшего пути между вершинами <tex> u </tex> и <tex> v </tex>, содержащего, помимо <tex>u</tex> и <tex>v</tex>, только вершины из множества <tex> \{ 1 .. i \} </tex> как <tex>d_{uv}^{(i)}</tex>, <tex>d_{uv}^{(0)} = \omega_{uv}</tex>.
  
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер {{---}} <tex> i </tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex> d_{uv}^{(i)} = min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) </tex>. То есть, если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex>, проходит через вершину <tex>i</tex>, то кратчайшим путем из <tex> u </tex> в <tex> v </tex> является кратчайший путь из <tex> u </tex> в <tex> i </tex>, объединенный с кратчайшим путем из <tex> i </tex> в <tex> v </tex>. В противном случае, когда этот путь не содержит вершины <tex> i </tex>, кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex> является кратчайшим путем из <tex>u</tex> в <tex>v</tex>, содержащим только вершины из множества <tex> \{ 1 .. i-1 \} </tex>.
+
На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер {{---}} <tex> i </tex>) и для всех пар вершин <tex>u</tex> и <tex>v</tex> вычислять <tex> d_{uv}^{(i)} = \min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) </tex>. То есть, если кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex>, проходит через вершину <tex>i</tex>, то кратчайшим путем из <tex> u </tex> в <tex> v </tex> является кратчайший путь из <tex> u </tex> в <tex> i </tex>, объединенный с кратчайшим путем из <tex> i </tex> в <tex> v </tex>. В противном случае, когда этот путь не содержит вершины <tex> i </tex>, кратчайший путь из <tex>u</tex> в <tex>v</tex>, содержащий только вершины из множества <tex> \{ 1 .. i \} </tex> является кратчайшим путем из <tex>u</tex> в <tex>v</tex>, содержащим только вершины из множества <tex> \{ 1 .. i-1 \} </tex>.
  
 
=== Код (в первом приближении) ===
 
=== Код (в первом приближении) ===
  # Инициализация
+
<tex>d^{(0)}_{uv} = w</tex>
  <tex dpi = "105"> d^{(0)} = w </tex>
+
'''for''' i = 1 '''to''' n
  # Основная часть
+
    '''for''' u = 1 '''to''' n
  for i in {1..n}:
+
        '''for''' v = 1 '''to''' n
    for u in {1..n}:
+
            <tex> d^{(i)}_{uv} = \min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) </tex>
      for v in {1..n}:
 
        <tex dpi = "105" > d^{(i)}_{uv} = min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) </tex>
 
  
 
В итоге получаем, что матрица <tex> d^{(n)} </tex> и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества <tex> \{ 1..n \} </tex>, что есть попросту все вершины графа. Такая реализация работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^3) </tex> памяти.
 
В итоге получаем, что матрица <tex> d^{(n)} </tex> и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества <tex> \{ 1..n \} </tex>, что есть попросту все вершины графа. Такая реализация работает за <tex> \Theta(n^3) </tex> времени и использует <tex> \Theta(n^3) </tex> памяти.
  
 
=== Код (окончательный) ===
 
=== Код (окончательный) ===
Утверждается, что можно избавиться от одной размерности в массиве <tex> d </tex>, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \le d_{uv} \le d_{uv}^{(i)}</tex>, а, поскольку, после выполнения работы алгоритма <tex> \rho(u, v) == d_{uv}^{(i)} </tex>, то тогда будет выполняться и <tex> \rho(u, v) == d_{uv} </tex>.
+
Утверждается, что можно избавиться от одной размерности в массиве <tex> d </tex>, т.е. использовать двумерный массив <tex>d_{uv}</tex>. В процессе работы алгоритма поддерживается инвариант <tex>\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}</tex>, а, поскольку, после выполнения работы алгоритма <tex> \rho(u, v) = d_{uv}^{(i)} </tex>, то тогда будет выполняться и <tex> \rho(u, v) = d_{uv} </tex>.
  
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
В течение работы алгоритма Флойда выполняются неравенства: <tex>\rho(u, v) \le d_{uv} \le d_{uv}^{(i)}</tex>.
+
В течение работы алгоритма Флойда выполняются неравенства: <tex>\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}</tex>.
 
|proof=
 
|proof=
  
Строка 43: Строка 41:
 
Пусть также <tex>d'_{uv}</tex> {{---}} значение <tex>d_{uv}</tex> сразу после <tex>i - 1</tex> итерации.
 
Пусть также <tex>d'_{uv}</tex> {{---}} значение <tex>d_{uv}</tex> сразу после <tex>i - 1</tex> итерации.
  
Покажем, что <tex> d_{uv} \le d_{uv}^{(i)} </tex>, зная, что <tex> d'_{uv} \le d_{uv}^{(i - 1)} </tex>.
+
Покажем, что <tex> d_{uv} \leqslant d_{uv}^{(i)} </tex>, зная, что <tex> d'_{uv} \leqslant d_{uv}^{(i - 1)} </tex>.
  
 
Рассмотрим два случая:
 
Рассмотрим два случая:
* Значение <tex> d_{uv}^{(i)} </tex> стало меньше, чем <tex> d_{uv}^{(i - 1)} </tex>. Тогда <tex> d_{uv}^{(i)} = d_{ui}^{(i-1)} + d_{iv}^{(i-1)} \ge </tex> (выполняется на шаге <tex> i - 1 </tex>, по индукционному  предположению) <tex> \ge d'_{ui}  + d'_{iv} \ge</tex> (в силу выполнения 7-ой строчки алгоритма на <tex>i</tex>-ой итерации и невозрастания элементов массива <tex> d </tex>) <tex>\ge d_{uv}</tex>.
+
* Значение <tex> d_{uv}^{(i)} </tex> стало меньше, чем <tex> d_{uv}^{(i - 1)} </tex>. Тогда <tex> d_{uv}^{(i)} = d_{ui}^{(i-1)} + d_{iv}^{(i-1)} \geqslant </tex> (выполняется на шаге <tex> i - 1 </tex>, по индукционному  предположению) <tex> \geqslant d'_{ui}  + d'_{iv} \ge</tex> (в силу выполнения 7-ой строчки алгоритма на <tex>i</tex>-ой итерации и невозрастания элементов массива <tex> d </tex>) <tex>\geqslant d_{uv}</tex>.
* В ином случае всё очевидно: <tex> d_{uv}^{(i)} = d_{uv}^{(i - 1)} \ge d'_{uv} \ge d_{uv} </tex>, и неравенство тривиально.
+
* В ином случае всё очевидно: <tex> d_{uv}^{(i)} = d_{uv}^{(i - 1)} \geqslant d'_{uv} \geqslant d_{uv} </tex>, и неравенство тривиально.
  
  
 
'''Докажем первое неравенство от противного.'''
 
'''Докажем первое неравенство от противного.'''
  
Пусть неравенство было нарушено, рассмотрим момент, когда оно было нарушено впервые. Пусть это была <tex>i</tex>-ая итерация и в этот момент изменилось значение <tex>d_{uv}</tex> и выполнилось  <tex>\rho(u,v) > d_{uv}</tex>. Так как <tex>d_{uv}</tex> изменилось, то <tex>d_{uv} = d_{ui} + d_{iv} \ge</tex> (так как ранее <tex>\forall u, v \in V: \rho(u,v) \le d_{uv}</tex>) <tex>\ge \rho(u, i) + \rho(i, v) \ge</tex> (по неравенству треугольника) <tex>\ge \rho(u, v)</tex>.  
+
Пусть неравенство было нарушено, рассмотрим момент, когда оно было нарушено впервые. Пусть это была <tex>i</tex>-ая итерация и в этот момент изменилось значение <tex>d_{uv}</tex> и выполнилось  <tex>\rho(u,v) > d_{uv}</tex>. Так как <tex>d_{uv}</tex> изменилось, то <tex>d_{uv} = d_{ui} + d_{iv} \ge</tex> (так как ранее <tex>\forall u, v \in V: \rho(u,v) \leqslant d_{uv}</tex>) <tex>\geqslant \rho(u, i) + \rho(i, v) \ge</tex> (по неравенству треугольника) <tex>\geqslant \rho(u, v)</tex>.  
Итак <tex>d_{uv} \ge \rho(u,v)</tex> {{---}} противоречие.
+
Итак <tex>d_{uv} \geqslant \rho(u,v)</tex> {{---}} противоречие.
 
}}
 
}}
  
  # Инициализация
+
'''func''' floyd(w)''':'''
  <tex dpi = "105"> d = w </tex>
+
    d = w
  # Основная часть
+
    '''for''' i = 1 '''to''' n
  for i in {1..n}:
+
        '''for''' u = 1 '''to''' n
    for u in {1..n}:
+
            '''for''' v = 1 '''to''' n
      for v in {1..n}:
+
                d[u][v] = min(d[u][v], d[u][i] + d[i][v])
        <tex dpi = "105"> d_{uv} = min(d_{uv}, d_{ui} + d_{iv}) </tex>
 
  
 
Данная реализация работает за время <tex> \Theta(n^3) </tex>, но требует уже <tex> \Theta(n^2) </tex> памяти. В целом, алгоритм Флойда очень прост, и, поскольку в нем используются только простые операции, константа, скрытая в определении <tex> \Theta </tex> весьма мала.
 
Данная реализация работает за время <tex> \Theta(n^3) </tex>, но требует уже <tex> \Theta(n^2) </tex> памяти. В целом, алгоритм Флойда очень прост, и, поскольку в нем используются только простые операции, константа, скрытая в определении <tex> \Theta </tex> весьма мала.
Строка 105: Строка 102:
  
 
== Вывод кратчайшего пути ==
 
== Вывод кратчайшего пути ==
Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив <tex>next_{uv}</tex>, в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из <tex>u</tex> в <tex>v</tex> по кратчайшему пути.
+
Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив <tex>next</tex>, в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из <tex>u</tex> в <tex>v</tex> по кратчайшему пути.
  
 
=== Модифицированный алгоритм ===
 
=== Модифицированный алгоритм ===
 
+
'''func''' floyd(w)''':'''
  # Инициализация
+
    d = w
  d = w
+
    '''for''' i = 1 '''to''' n
  t[u][v] = v если есть ребро uv
+
        '''for''' u = 1 '''to''' n
  # Основная часть
+
            '''for''' v = 1 '''to''' n
  for i in {1..n}:
+
                '''if''' d[u][i] + d[i][v] < d[u][v]
    for u in {1..n}:
+
                    d[u][v] = d[u][i] + d[i][v]
      for v in {1..n}:
+
                    next[u][v] = i
        if (d[u][i] + d[i][v]) < d[u][v]:
 
          d[u][v] = d[u][i] + d[i][v]
 
          next[u][v] = i
 
  
  # Вывод кратчайшего пути
+
'''func''' get_shortest_path(u, v)''':'''
  def get_shortest_path(u, v):
+
    '''if''' d[u][v] == <tex>\infty</tex>
    if d[u][v] == inf:
+
        '''print''' "No path found"                <font color="green">// между вершинами u и v нет пути</font>
        raise NoPath # Из u в v пути нет
+
    c = u
    c = u
+
    '''while''' c != v
    while c != v:
+
        '''print''' c
      print c
+
        c = next[c][v]
      c = next[c][v]
+
    '''print''' v
    print v
 
  
 
== Нахождение отрицательного цикла ==
 
== Нахождение отрицательного цикла ==
Строка 139: Строка 132:
 
Из доказательства следует, что для поиска цикла отрицательного веса необходимо, после завершения работы алгоритма, найти вершину <tex> i </tex>, для которой <tex> d[i][i] < 0 </tex>, и вывести кратчайший путь между парой вершин <tex> (i, i) </tex>. При этом стоит учитывать, что при наличии отрицательного цикла расстояния могут уменьшаться экспоненциально. Для предотвращения переполнения все вычисления стоит ограничивать снизу величиной <tex>-INF</tex>, либо проверять наличие отрицательных чисел на главной диагонали во время подсчета.
 
Из доказательства следует, что для поиска цикла отрицательного веса необходимо, после завершения работы алгоритма, найти вершину <tex> i </tex>, для которой <tex> d[i][i] < 0 </tex>, и вывести кратчайший путь между парой вершин <tex> (i, i) </tex>. При этом стоит учитывать, что при наличии отрицательного цикла расстояния могут уменьшаться экспоненциально. Для предотвращения переполнения все вычисления стоит ограничивать снизу величиной <tex>-INF</tex>, либо проверять наличие отрицательных чисел на главной диагонали во время подсчета.
 
== Литература ==
 
== Литература ==
* ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
+
* Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ 2-е изд — М.: Издательский дом «Вильямс», 2009. — ISBN 978-5-8459-0857-5.
 +
* [https://ru.wikipedia.org/wiki/Алгоритм_Флойда_—_Уоршелла Википедия - Алгоритм Флойда — Уоршелла]
 +
* [https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm Wikipedia - Floyd–Warshall algorithm]
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Кратчайшие пути в графах ]]
 
[[Категория: Кратчайшие пути в графах ]]

Версия 19:47, 19 декабря 2015

Алгоритм Флойда (алгоритм Флойда–Уоршелла) — алгоритм нахождения длин кратчайших путей между всеми парами вершин во взвешенном ориентированном графе. Работает корректно, если в графе нет циклов отрицательной величины, а в случае, когда такой цикл есть, позволяет найти хотя бы один такой цикл. Алгоритм работает за [math] \Theta(n^3) [/math] времени и использует [math] \Theta(n^2) [/math] памяти. Разработан в 1962 году.

Алгоритм

Постановка задачи

Текущий (синий) путь и потенциально более короткий (красный)

Дан взвешенный ориентированный граф [math] G(V, E) [/math]; [math]\omega_{uv} = \begin{cases} \text{weight of }uv ,& \text{if } uv \in E \\ +\infty ,& \text{if } uv \notin E \end{cases}[/math], в котором вершины пронумерованы от [math]1[/math] до [math]n[/math]. Требуется найти матрицу кратчайших расстояний [math] d [/math], в которой элемент [math] d_{ij} [/math] либо равен длине кратчайшего пути из [math] i [/math] в [math] j [/math], либо равен [math] +\infty [/math], если вершина [math] j [/math] не достижима из [math] i [/math].

Описание

Обозначим длину кратчайшего пути между вершинами [math] u [/math] и [math] v [/math], содержащего, помимо [math]u[/math] и [math]v[/math], только вершины из множества [math] \{ 1 .. i \} [/math] как [math]d_{uv}^{(i)}[/math], [math]d_{uv}^{(0)} = \omega_{uv}[/math].

На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер — [math] i [/math]) и для всех пар вершин [math]u[/math] и [math]v[/math] вычислять [math] d_{uv}^{(i)} = \min(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}) [/math]. То есть, если кратчайший путь из [math]u[/math] в [math]v[/math], содержащий только вершины из множества [math] \{ 1 .. i \} [/math], проходит через вершину [math]i[/math], то кратчайшим путем из [math] u [/math] в [math] v [/math] является кратчайший путь из [math] u [/math] в [math] i [/math], объединенный с кратчайшим путем из [math] i [/math] в [math] v [/math]. В противном случае, когда этот путь не содержит вершины [math] i [/math], кратчайший путь из [math]u[/math] в [math]v[/math], содержащий только вершины из множества [math] \{ 1 .. i \} [/math] является кратчайшим путем из [math]u[/math] в [math]v[/math], содержащим только вершины из множества [math] \{ 1 .. i-1 \} [/math].

Код (в первом приближении)

[math]d^{(0)}_{uv} = w[/math]
for i = 1 to n
    for u = 1 to n
        for v = 1 to n
            [math] d^{(i)}_{uv} = \min(d^{(i - 1)}_{uv}, d^{(i - 1)}_{ui} + d^{(i - 1)}_{iv}) [/math]

В итоге получаем, что матрица [math] d^{(n)} [/math] и является искомой матрицей кратчайших путей, поскольку содержит в себе длины кратчайших путей между всеми парами вершин, имеющих в качестве промежуточных вершин вершины из множества [math] \{ 1..n \} [/math], что есть попросту все вершины графа. Такая реализация работает за [math] \Theta(n^3) [/math] времени и использует [math] \Theta(n^3) [/math] памяти.

Код (окончательный)

Утверждается, что можно избавиться от одной размерности в массиве [math] d [/math], т.е. использовать двумерный массив [math]d_{uv}[/math]. В процессе работы алгоритма поддерживается инвариант [math]\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}[/math], а, поскольку, после выполнения работы алгоритма [math] \rho(u, v) = d_{uv}^{(i)} [/math], то тогда будет выполняться и [math] \rho(u, v) = d_{uv} [/math].

Утверждение:
В течение работы алгоритма Флойда выполняются неравенства: [math]\rho(u, v) \leqslant d_{uv} \leqslant d_{uv}^{(i)}[/math].
[math]\triangleright[/math]

После инициализации все неравенства, очевидно, выполняются. Далее, массив [math] d [/math] может измениться только в строчке 5.

Докажем второе неравенство индукцией по итерациям алгоритма.

Пусть также [math]d'_{uv}[/math] — значение [math]d_{uv}[/math] сразу после [math]i - 1[/math] итерации.

Покажем, что [math] d_{uv} \leqslant d_{uv}^{(i)} [/math], зная, что [math] d'_{uv} \leqslant d_{uv}^{(i - 1)} [/math].

Рассмотрим два случая:

  • Значение [math] d_{uv}^{(i)} [/math] стало меньше, чем [math] d_{uv}^{(i - 1)} [/math]. Тогда [math] d_{uv}^{(i)} = d_{ui}^{(i-1)} + d_{iv}^{(i-1)} \geqslant [/math] (выполняется на шаге [math] i - 1 [/math], по индукционному предположению) [math] \geqslant d'_{ui} + d'_{iv} \ge[/math] (в силу выполнения 7-ой строчки алгоритма на [math]i[/math]-ой итерации и невозрастания элементов массива [math] d [/math]) [math]\geqslant d_{uv}[/math].
  • В ином случае всё очевидно: [math] d_{uv}^{(i)} = d_{uv}^{(i - 1)} \geqslant d'_{uv} \geqslant d_{uv} [/math], и неравенство тривиально.


Докажем первое неравенство от противного.

Пусть неравенство было нарушено, рассмотрим момент, когда оно было нарушено впервые. Пусть это была [math]i[/math]-ая итерация и в этот момент изменилось значение [math]d_{uv}[/math] и выполнилось [math]\rho(u,v) \gt d_{uv}[/math]. Так как [math]d_{uv}[/math] изменилось, то [math]d_{uv} = d_{ui} + d_{iv} \ge[/math] (так как ранее [math]\forall u, v \in V: \rho(u,v) \leqslant d_{uv}[/math]) [math]\geqslant \rho(u, i) + \rho(i, v) \ge[/math] (по неравенству треугольника) [math]\geqslant \rho(u, v)[/math].

Итак [math]d_{uv} \geqslant \rho(u,v)[/math] — противоречие.
[math]\triangleleft[/math]
func floyd(w):
    d = w
    for i = 1 to n
        for u = 1 to n
            for v = 1 to n
                d[u][v] = min(d[u][v], d[u][i] + d[i][v])

Данная реализация работает за время [math] \Theta(n^3) [/math], но требует уже [math] \Theta(n^2) [/math] памяти. В целом, алгоритм Флойда очень прост, и, поскольку в нем используются только простые операции, константа, скрытая в определении [math] \Theta [/math] весьма мала.

Пример работы

[math]i = 0[/math] [math]i = 1[/math] [math]i = 2[/math] [math]i = 3 [/math] [math]i = 4[/math]
0.png Floyd 1.png Floyd 2.png Floyd algo 3.png Floyd 4.png
[math]\begin{pmatrix} \times & 1 & 6 & \infty \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & 6 & \infty \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & \bf{5} & \bf{2} \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & 5 & 2 \\ \infty & \times & 4 & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math] [math]\begin{pmatrix} \times & 1 & \bf{3} & 2 \\ \infty & \times & \bf{2} & 1 \\ \infty & \infty & \times & \infty \\ \infty & \infty & 1 & \times \\ \end{pmatrix}[/math]

Вывод кратчайшего пути

Алгоритм Флойда легко модифицировать таким образом, чтобы он возвращал не только длину кратчайшего пути, но и сам путь. Для этого достаточно завести дополнительный массив [math]next[/math], в котором будет храниться номер вершины, в которую надо пойти следующей, чтобы дойти из [math]u[/math] в [math]v[/math] по кратчайшему пути.

Модифицированный алгоритм

func floyd(w):
    d = w
    for i = 1 to n
        for u = 1 to n
            for v = 1 to n
                if d[u][i] + d[i][v] < d[u][v]
                    d[u][v] = d[u][i] + d[i][v]
                    next[u][v] = i
func get_shortest_path(u, v):
    if d[u][v] == [math]\infty[/math]
        print "No path found"                 // между вершинами u и v нет пути
    c = u
    while c != v
        print c
        c = next[c][v]
    print v

Нахождение отрицательного цикла

Утверждение:
При наличии цикла отрицательного веса в матрице [math] D [/math] появятся отрицательные числа на главной диагонали.
[math]\triangleright[/math]
Так как алгоритм Флойда последовательно релаксирует расстояния между всеми парами вершин [math](i, j)[/math], в том числе и теми, у которых [math]i = j[/math], а начальное расстояние между парой вершин [math](i, i)[/math] равно нулю, то релаксация может произойти только при наличии вершины [math] k [/math] такой, что [math] d[i][k] + d[k][i] \lt 0 [/math], что эквивалентно наличию отрицательного цикла, проходящего через вершину [math] i [/math].
[math]\triangleleft[/math]

Из доказательства следует, что для поиска цикла отрицательного веса необходимо, после завершения работы алгоритма, найти вершину [math] i [/math], для которой [math] d[i][i] \lt 0 [/math], и вывести кратчайший путь между парой вершин [math] (i, i) [/math]. При этом стоит учитывать, что при наличии отрицательного цикла расстояния могут уменьшаться экспоненциально. Для предотвращения переполнения все вычисления стоит ограничивать снизу величиной [math]-INF[/math], либо проверять наличие отрицательных чисел на главной диагонали во время подсчета.

Литература