Алгоритм масштабирования потока — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 86 промежуточных версий 8 участников)
Строка 1: Строка 1:
{{Определение
+
== Алгоритм ==
|definition=
+
Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все рёбра которой имеют целочисленную [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускную способность]]. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>.
Алгоритм масштабирования потока — алгоритм поиска максимального потока путём регулирования пропускной способности рёбер.
+
 
Этот алгоритм работает в предположении, что все пропускные способности рёбер целые, так как они легко представимы в двоичном виде.
+
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>.
}}
+
 
 +
На каждой итерации в [[Дополняющая_сеть,_дополняющий_путь|дополняющей сети]] алгоритм находит [[Дополняющая_сеть,_дополняющий_путь|дополняющие пути]] с пропускной способностью не меньшей <tex> \Delta </tex> и увеличивает поток вдоль них.
 +
Уменьшив масштаб <tex> \Delta </tex> в <tex> 2 </tex> раза, переходит к следующей итерации.
  
== Идея ==
+
Очевидно, что при <tex> \Delta = 1 </tex> алгоритм вырождается в алгоритм [[Алоритм_Эдмондса-Карпа|Эдмондса-Карпа]], вследствие чего является корректным.
Идея алгоритма в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.
 
  
Пусть <tex> G </tex> — граф, <tex> \forall(u, v) \in EG \colon c(u,v) \in \mathbb{Z_+}, U = \max\limits_{(u, v) \in EG} c(u, v) </tex> — максимальная пропускная способность. Запишем пропускную способность каждого ребра в двоичном виде. Тогда каждое число будет занимать <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 </tex> бит.
+
Количество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.
 +
{|border="0" cellpadding="5" width=30% align=center
 +
|[[Файл:Flow_scale_1.png|550px|thumb|center|Выбор дополняющих путей в порядке длины]]
 +
|[[Файл:Flow_scale_2.png|550px|thumb|center|Выбор пути с высокой пропускной способностью в первую очередь]]
 +
|}
  
<tex> c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) \times 2^n, a_i(u, v) \in \{0, 1\} </tex>
+
== Оценка времени работы ==
 +
{{Лемма
 +
|about=
 +
1
 +
|statement=
 +
Максимальный поток в сети <tex> G </tex> ограничен сверху значением <tex> |f_k| + 2^k E </tex>, где <tex> |f_k| </tex> {{---}} значение потока при масштабе <tex> \Delta = 2^k </tex>.
 +
|proof=
 +
[[Файл:Flow_scale_3.png|530px|thumb|right|Разрез <tex> C_k </tex>]]
  
Методом Форда-Фалкерсона находим поток <tex> f_0 </tex> для графа с урезанными пропускными способностями <tex> c_0(u, v) = a_n(u, v) </tex>.
+
В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>.
Добавим следующий бит и находим следующее приближение для графа с новыми пропускными способностями <tex> c_1(u, v) = 2 a_n(u, v) + a_{n - 1}(u, v) - 2 f_0(u, v) </tex>.
 
  
После <tex> n + 1 </tex> итерации получим ответ к задаче, так как после с каждым шагом приближение становится точнее.
+
При этом, количество таких рёбер не превосходит <tex> E </tex>.
 +
Значит, значение остаточного потока не может превосходить <tex> \Delta E = 2^k E </tex>.
 +
}}
  
== Оценка сложности ==
+
{{Лемма
 +
|about=
 +
2
 +
|statement=
 +
Суммарное количество увеличивающих путей {{---}} <tex> O(E \log U) </tex>.
 +
|proof=
 +
На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 2^k </tex>.
 +
Дополняющий поток на предыдущем шаге ограничен значением <tex> 2^{k + 1} E </tex>. Следовательно, на каждой итерации количество дополняющих путей не превосходит <tex> 2E </tex>.}}
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Время работы алгоритма <tex> O(E^2 \log U) </tex>.
+
Время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.
 
|proof=
 
|proof=
[[Файл:Scaling.jpg|right]]
+
В ходе выполнения алгоритма масштаб <tex> \Delta </tex> принимает следующие значения: <tex> S = \{2^{\lfloor \log_2 U \rfloor}, \ldots, 2^k, \ldots, 2, 1, 0\} </tex>. Тогда <tex> |S| = O(\log U) </tex> {{---}} количество итераций алгоритма.
  
Количество итераций <tex> O(\log U) </tex>. Докажем, что сложность каждой итерации — <tex> O(E^2) </tex>.
+
Количество итераций алгоритма {{---}} <tex> O(\log U) </tex>, значит, суммарное количество увеличивающих путей {{---}} <tex> O(E \log U) </tex>.
  
На каждом шаге алгоритм выполняет в худшем случае <tex>O(E)</tex> увеличений потока. Докажем это. Пусть <tex>\Delta = 2^k</tex>. В конце шага множество вершин графа можно разбить на две части: <tex>A_k</tex> и <tex>\overline{A_k}</tex>. Все рёбра, выходящие из <tex>A_k</tex>, имеют остаточную пропускную способность менее <tex>2^k</tex>. Наибольшее количество рёбер между <tex>A_k</tex> и <tex>\overline{A_k}</tex> равно <tex>E</tex>. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением <tex>k</tex> максимально составляет <tex>2^kE</tex>.  Каждый увеличивающий путь при данном <tex>k</tex> имеет пропускную способность как минимум <tex>2^k</tex>. На предыдущем шаге, с масштабом <tex>k+1</tex>, остаточный поток ограничен <tex>2^{k+1}E</tex>. Значит максимальное число появившихся увеличивающих путей равно <tex>2E</tex>. Увеличивающий путь можно найти за <tex>O(E)</tex>, используя [[Обход_в_ширину | BFS]]. Количество шагов <tex>O(\log_2U)</tex>. Итоговая сложность <tex>O(E^2\log_2U)</tex>.
+
Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> O(E) </tex>. Следовательно, суммарное время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.}}
}}
 
  
 
== Псевдокод ==
 
== Псевдокод ==
  '''Capacity-Scaling'''
+
  '''function''' maxFlowByScaling(G: '''graph''', s: '''int''', t: '''int'''): '''int'''
     <tex> f \leftarrow 0 </tex>
+
     '''int''' flow = 0                                        <font color=darkgreen> // поток в сети </font>
     <tex> \Delta \leftarrow 2^{\lfloor \log_2 U \rfloor}</tex>
+
     '''int''' scale = <tex>2^{\lfloor\log_2U\rfloor}</tex>                                  <font color=darkgreen> // текущий минимальный размер потока, который пытаемся пустить </font>
     '''while''' <tex> \Delta >0</tex>
+
     '''while''' scale <tex> \geqslant </tex> 1
         '''do''' '''while''' в <tex>G_f</tex> существует <tex>s-t</tex> путь с пропускной способностью большей <tex>\Delta</tex>
+
         '''while''' в <tex> G_f </tex> существует увеличивающий путь <tex> p </tex> с пропускной способностью не меньше, чем scale
                '''do''' <tex>P\leftarrow</tex> путь с пропускной способностью большей <tex>\Delta</tex>
+
            '''int''' minCapacity = <tex>\min\{c(u, v) \colon(u, v) \in p\} </tex>    <font color=darkgreen> // минимальная пропускная способность в увеличивающем пути </font>
                  <tex>\delta\leftarrow\min\{c_{ij}\colon(i,j)\in P\}</tex>
+
            увеличить поток по рёбрам <tex> p </tex> на minCapacity
                  увеличить поток по рёбрам <tex>P</tex> на <tex>\delta</tex>
+
            обновить <tex> G_f </tex>
                  обновить <tex>G_f</tex>
+
            flow = flow + minCapacity
                  <tex>f\leftarrow f+\delta</tex>
+
        scale = scale / 2
            <tex>\Delta\leftarrow\Delta/2</tex>
+
    '''return''' flow
  
== Литература ==
+
== См. также ==
 +
* [[Определение_сети,_потока|Определение сети, потока]]
 +
* [[Алоритм_Эдмондса-Карпа|Алоритм Эдмондса-Карпа]]
 +
* [[Алгоритм_Форда-Фалкерсона,_реализация_с_помощью_поиска_в_глубину|Алгоритм Форда-Фалкерсона]]
 +
 
 +
== Источники информации ==
 
* [http://www.csd.uwo.ca/~yuri/Papers/iccv07_cap_scaling.pdf ''Olivier Juan, Yuri Boikov'': Capacity Scaling for Graph Cuts in Vision]
 
* [http://www.csd.uwo.ca/~yuri/Papers/iccv07_cap_scaling.pdf ''Olivier Juan, Yuri Boikov'': Capacity Scaling for Graph Cuts in Vision]
 
* [http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlowRevisited Algorithm Tutorials. Maximum Flow: Augmenting Path Algorithms Comparison]
 
* [http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlowRevisited Algorithm Tutorials. Maximum Flow: Augmenting Path Algorithms Comparison]
* [http://www.cs-seminar.spb.ru/reports/34.pdf ''Андрей Станкевич'': Задача о максимальном потоке]
+
* [http://logic.pdmi.ras.ru/ics/talks/21stream.pdf ''Андрей Станкевич'': Задача о максимальном потоке]
 +
* [https://youtu.be/sEwp5ZAJJps?t=18m9s ''Андрей Станкевич'': Лекториум, дополнительные главы алгоритмов, лекция 12]
 +
 
 +
[[Категория: Алгоритмы и структуры данных]]
 +
[[Категория: Задача о максимальном потоке]]

Текущая версия на 19:21, 4 сентября 2022

Алгоритм

Пусть дана сеть [math] G [/math], все рёбра которой имеют целочисленную пропускную способность. Обозначим за [math] U [/math] максимальную пропускную способность: [math] U = \max\limits_{(u, v) \in E} c(u, v) [/math].

Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом [math] \Delta [/math]. Изначально положим [math] \Delta = 2^{\lfloor \log_2 U \rfloor} [/math].

На каждой итерации в дополняющей сети алгоритм находит дополняющие пути с пропускной способностью не меньшей [math] \Delta [/math] и увеличивает поток вдоль них. Уменьшив масштаб [math] \Delta [/math] в [math] 2 [/math] раза, переходит к следующей итерации.

Очевидно, что при [math] \Delta = 1 [/math] алгоритм вырождается в алгоритм Эдмондса-Карпа, вследствие чего является корректным.

Количество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.

Выбор дополняющих путей в порядке длины
Выбор пути с высокой пропускной способностью в первую очередь

Оценка времени работы

Лемма (1):
Максимальный поток в сети [math] G [/math] ограничен сверху значением [math] |f_k| + 2^k E [/math], где [math] |f_k| [/math] — значение потока при масштабе [math] \Delta = 2^k [/math].
Доказательство:
[math]\triangleright[/math]
Разрез [math] C_k [/math]

В конце итерации с масштабом [math] \Delta = 2^k [/math], сеть [math] G_{f_k} [/math] может быть разбита на два непересекающихся множества [math] A_k [/math] и [math] \overline{A_k} [/math] так, что остаточная пропускная способность каждого ребра, идущего из [math] A_k [/math] в [math] \overline{A_k} [/math], не превосходит масштаба [math] \Delta [/math]. То есть образуется разрез [math] C_k = \langle A_k, \overline{A_k} \rangle [/math].

При этом, количество таких рёбер не превосходит [math] E [/math].

Значит, значение остаточного потока не может превосходить [math] \Delta E = 2^k E [/math].
[math]\triangleleft[/math]
Лемма (2):
Суммарное количество увеличивающих путей — [math] O(E \log U) [/math].
Доказательство:
[math]\triangleright[/math]

На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше [math] 2^k [/math].

Дополняющий поток на предыдущем шаге ограничен значением [math] 2^{k + 1} E [/math]. Следовательно, на каждой итерации количество дополняющих путей не превосходит [math] 2E [/math].
[math]\triangleleft[/math]
Утверждение:
Время работы алгоритма — [math] O(E^2 \log U) [/math].
[math]\triangleright[/math]

В ходе выполнения алгоритма масштаб [math] \Delta [/math] принимает следующие значения: [math] S = \{2^{\lfloor \log_2 U \rfloor}, \ldots, 2^k, \ldots, 2, 1, 0\} [/math]. Тогда [math] |S| = O(\log U) [/math] — количество итераций алгоритма.

Количество итераций алгоритма — [math] O(\log U) [/math], значит, суммарное количество увеличивающих путей — [math] O(E \log U) [/math].

Алгоритм обхода в ширину находит каждый дополняющий путь за время [math] O(E) [/math]. Следовательно, суммарное время работы алгоритма — [math] O(E^2 \log U) [/math].
[math]\triangleleft[/math]

Псевдокод

function maxFlowByScaling(G: graph, s: int, t: int): int
    int flow = 0                                          // поток в сети 
    int scale = [math]2^{\lfloor\log_2U\rfloor}[/math]                                   // текущий минимальный размер потока, который пытаемся пустить 
    while scale [math] \geqslant [/math] 1
        while в [math] G_f [/math] существует увеличивающий путь [math] p [/math] с пропускной способностью не меньше, чем scale
            int minCapacity = [math]\min\{c(u, v) \colon(u, v) \in p\} [/math]      // минимальная пропускная способность в увеличивающем пути 
            увеличить поток по рёбрам [math] p [/math] на minCapacity
            обновить [math] G_f [/math]
            flow = flow + minCapacity
        scale = scale / 2
    return flow

См. также

Источники информации