Алгоритм масштабирования потока — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
  
 
== Идея ==
 
== Идея ==
Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем по всем остальным. Пусть <tex>U</tex> - максимальная пропускная способность. Введём параметр <tex>\Delta = 2^{\lfloor\log_2U\rfloor}</tex>. На каждом шаге будем искать в остаточном графе увеличивающие пути с пропускной способностью не меньше, чем <tex>\Delta</tex>, и увеличивать поток вдоль этих путей. В конце шага будем уменьшать <tex>\Delta</tex> в два раза, и на следующем шаге будем искать увеличивающий путь с новым значением параметра. При значении <tex>\Delta</tex>, равном единице, данный алгоритм становится идентичен [[Алоритм_Эдмондса-Карпа | алгоритму Эдмондса — Карпа]]. Из этого следует, что алгоритм корректен.
+
Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем по всем остальным.
  
Пусть <tex> G </tex> — граф, <tex> \forall(u, v) \in EG \colon c(u,v) \in \mathbb{Z_+}, U = \max\limits_{(u, v) \in EG} c(u, v) </tex> — максимальная пропускная способность. Запишем пропускную способность каждого ребра в двоичном виде. Тогда каждое число будет занимать <tex> \lceil \log_2 U \rceil = n </tex> бит.
+
Пусть <tex> G </tex> — граф, <tex> \forall(u, v) \in EG \colon c(u,v) \in \mathbb{Z_+}, U = \max\limits_{(u, v) \in EG} c(u, v) </tex> — максимальная пропускная способность. Запишем пропускную способность каждого ребра в двоичном виде. Тогда каждое число будет занимать <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 </tex> бит.
  
<tex> c(u, v) = \sum\limits_{i = 0}^{n - 1} a_i(u, v) 2^n, a_i(u, v) \in {0, 1} </tex>
+
<tex> c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) 2^n, a_i(u, v) \in {0, 1} </tex>
 +
 
 +
Методом Форда-Фалкерсона найдем поток <tex> f_0 </tex> для графа с урезанными пропускными способностями <tex> c_0(u, v) = a_n(u, v) </tex>.
 +
Добавим следующий бит и находим следующее приближение
 +
 
 +
После <tex> n + 1 </tex> итерации получим ответ к задаче
  
 
== Оценка сложности ==
 
== Оценка сложности ==
 +
{{Утверждение
 +
|statement=
 +
Время работы алгоритма — <tex> O(E^2 \log U) </tex>.
 +
|proof=
 
[[Файл:Scaling.jpg|right]]
 
[[Файл:Scaling.jpg|right]]
 
На каждом шаге алгоритм выполняет в худшем случае <tex>O(E)</tex> увеличений потока. Докажем это. Пусть <tex>\Delta = 2^k</tex>. В конце шага множество вершин графа можно разбить на две части: <tex>A_k</tex> и <tex>\overline{A_k}</tex>. Все рёбра, выходящие из <tex>A_k</tex>, имеют остаточную пропускную способность менее <tex>2^k</tex>. Наибольшее количество рёбер между <tex>A_k</tex> и <tex>\overline{A_k}</tex> равно <tex>E</tex>. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением <tex>k</tex> максимально составляет <tex>2^kE</tex>.  Каждый увеличивающий путь при данном <tex>k</tex> имеет пропускную способность как минимум <tex>2^k</tex>. На предыдущем шаге, с масштабом <tex>k+1</tex>, остаточный поток ограничен <tex>2^{k+1}E</tex>. Значит максимальное число появившихся увеличивающих путей равно <tex>2E</tex>. Увеличивающий путь можно найти за <tex>O(E)</tex>, используя [[Обход_в_ширину | BFS]]. Количество шагов <tex>O(\log_2U)</tex>. Итоговая сложность <tex>O(E^2\log_2U)</tex>.
 
На каждом шаге алгоритм выполняет в худшем случае <tex>O(E)</tex> увеличений потока. Докажем это. Пусть <tex>\Delta = 2^k</tex>. В конце шага множество вершин графа можно разбить на две части: <tex>A_k</tex> и <tex>\overline{A_k}</tex>. Все рёбра, выходящие из <tex>A_k</tex>, имеют остаточную пропускную способность менее <tex>2^k</tex>. Наибольшее количество рёбер между <tex>A_k</tex> и <tex>\overline{A_k}</tex> равно <tex>E</tex>. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением <tex>k</tex> максимально составляет <tex>2^kE</tex>.  Каждый увеличивающий путь при данном <tex>k</tex> имеет пропускную способность как минимум <tex>2^k</tex>. На предыдущем шаге, с масштабом <tex>k+1</tex>, остаточный поток ограничен <tex>2^{k+1}E</tex>. Значит максимальное число появившихся увеличивающих путей равно <tex>2E</tex>. Увеличивающий путь можно найти за <tex>O(E)</tex>, используя [[Обход_в_ширину | BFS]]. Количество шагов <tex>O(\log_2U)</tex>. Итоговая сложность <tex>O(E^2\log_2U)</tex>.
 +
}}
  
 
== Псевдокод ==
 
== Псевдокод ==

Версия 22:52, 18 декабря 2011

Алгоритм масштабирования потока — алгоритм поиска максимального потока путём регулирования пропускной способности рёбер. Этот алгоритм работает в предположении, что все пропускные способности рёбер целые.

Идея

Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем по всем остальным.

Пусть [math] G [/math] — граф, [math] \forall(u, v) \in EG \colon c(u,v) \in \mathbb{Z_+}, U = \max\limits_{(u, v) \in EG} c(u, v) [/math] — максимальная пропускная способность. Запишем пропускную способность каждого ребра в двоичном виде. Тогда каждое число будет занимать [math] \lfloor \log_2 U \rfloor + 1 = n + 1 [/math] бит.

[math] c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) 2^n, a_i(u, v) \in {0, 1} [/math]

Методом Форда-Фалкерсона найдем поток [math] f_0 [/math] для графа с урезанными пропускными способностями [math] c_0(u, v) = a_n(u, v) [/math]. Добавим следующий бит и находим следующее приближение

После [math] n + 1 [/math] итерации получим ответ к задаче

Оценка сложности

Утверждение:
Время работы алгоритма — [math] O(E^2 \log U) [/math].
[math]\triangleright[/math]
Scaling.jpg
На каждом шаге алгоритм выполняет в худшем случае [math]O(E)[/math] увеличений потока. Докажем это. Пусть [math]\Delta = 2^k[/math]. В конце шага множество вершин графа можно разбить на две части: [math]A_k[/math] и [math]\overline{A_k}[/math]. Все рёбра, выходящие из [math]A_k[/math], имеют остаточную пропускную способность менее [math]2^k[/math]. Наибольшее количество рёбер между [math]A_k[/math] и [math]\overline{A_k}[/math] равно [math]E[/math]. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением [math]k[/math] максимально составляет [math]2^kE[/math]. Каждый увеличивающий путь при данном [math]k[/math] имеет пропускную способность как минимум [math]2^k[/math]. На предыдущем шаге, с масштабом [math]k+1[/math], остаточный поток ограничен [math]2^{k+1}E[/math]. Значит максимальное число появившихся увеличивающих путей равно [math]2E[/math]. Увеличивающий путь можно найти за [math]O(E)[/math], используя BFS. Количество шагов [math]O(\log_2U)[/math]. Итоговая сложность [math]O(E^2\log_2U)[/math].
[math]\triangleleft[/math]

Псевдокод

Capacity-Scaling
    [math] f \leftarrow 0 [/math]
    [math] \Delta \leftarrow 2^{\lfloor \log_2 U \rfloor}[/math]
    while [math] \Delta \gt 0[/math]
        do while в [math]G_f[/math] существует [math]s-t[/math] путь с пропускной способностью большей [math]\Delta[/math]
               do [math]P\leftarrow[/math] путь с пропускной способностью большей [math]\Delta[/math]
                  [math]\delta\leftarrow\min\{c_{ij}\colon(i,j)\in P\}[/math]
                  увеличить поток по рёбрам [math]P[/math] на [math]\delta[/math]
                  обновить [math]G_f[/math]
                  [math]f\leftarrow f+\delta[/math]
           [math]\Delta\leftarrow\Delta/2[/math]

Литература