Алгоритм поиска подстроки в строке с помощью суффиксного массива — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Более быстрый поиск)
(Более быстрый поиск)
Строка 183: Строка 183:
  
 
Существует более быстрый алгоритм поиска образца в строке. Для этого используется <tex> lcp </tex> (longest common prefix). <br>
 
Существует более быстрый алгоритм поиска образца в строке. Для этого используется <tex> lcp </tex> (longest common prefix). <br>
Пусть <tex> L_p </tex> и <tex> R_p </tex> - левая и правая границы диапазона ответов. У любого суффикса в пределах этого диапазона есть префикс, который полностью совпадает с образцом. <br>
+
Пусть <tex> L_p </tex> и <tex> R_p </tex> - левая и правая границы диапазона ответов в суффиксном массиве <tex> array </tex>. У любого суффикса в пределах этого диапазона есть префикс, который полностью совпадает с образцом. <br>
 
Пусть <tex> L </tex> - левая граница диапазона поиска (изначально равна 0), <tex> R </tex> - правая граница диапазона поиска (изначально равна <tex> |S| - 1 </tex>), а <tex> M = (L + R) / 2 </tex>. <br>
 
Пусть <tex> L </tex> - левая граница диапазона поиска (изначально равна 0), <tex> R </tex> - правая граница диапазона поиска (изначально равна <tex> |S| - 1 </tex>), а <tex> M = (L + R) / 2 </tex>. <br>
 
Пусть <tex> l = lcp(array[L], p) </tex>, а <tex> r = lcp(array[R], p) </tex>. В самом начале просто посчитаем <tex> l </tex> и <tex> r </tex> за линейное время, а во время выполнения алгоритма прямой пересчет производиться не будет, изменения будут происходить за <tex> O(1) </tex>. <br>
 
Пусть <tex> l = lcp(array[L], p) </tex>, а <tex> r = lcp(array[R], p) </tex>. В самом начале просто посчитаем <tex> l </tex> и <tex> r </tex> за линейное время, а во время выполнения алгоритма прямой пересчет производиться не будет, изменения будут происходить за <tex> O(1) </tex>. <br>
Строка 190: Строка 190:
 
Сразу проверим образец с суффиксами по краям исходного диапазона поиска <tex> L </tex> и <tex> R </tex>. Если образец лексикографически больше последнего суффикса <tex> array </tex> или меньше первого суффикса, то образец не встречается в строке вовсе, и поиск можно прекратить. <br>
 
Сразу проверим образец с суффиксами по краям исходного диапазона поиска <tex> L </tex> и <tex> R </tex>. Если образец лексикографически больше последнего суффикса <tex> array </tex> или меньше первого суффикса, то образец не встречается в строке вовсе, и поиск можно прекратить. <br>
 
<tex> L_p </tex> ищется при помощи бинарного поиска. На каждом шаге поиска нам надо определять, на каком отрезке <tex> [L, M] </tex> или <tex> [M, R] </tex> надо продолжать поиск границы <tex> L_p </tex>. Каждую итерацию бинарного поиска будем сравнивать <tex> m_l </tex> и <tex> m_r </tex>. Если <tex> m_l \ge m_r </tex>, то возможно одно из трех: <br>
 
<tex> L_p </tex> ищется при помощи бинарного поиска. На каждом шаге поиска нам надо определять, на каком отрезке <tex> [L, M] </tex> или <tex> [M, R] </tex> надо продолжать поиск границы <tex> L_p </tex>. Каждую итерацию бинарного поиска будем сравнивать <tex> m_l </tex> и <tex> m_r </tex>. Если <tex> m_l \ge m_r </tex>, то возможно одно из трех: <br>
1) <tex> m_l = l </tex>. Это означает, что у каждого суффикса из <tex> [L, M] </tex> есть хотя бы <tex> l </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Можно сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> l </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> l + k </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> m_r = l + k </tex>, иначе <tex> L = M </tex> и <tex> m_l = l + k </tex>.<br>
+
1) <tex> m_l = l </tex>. Это означает, что у каждого суффикса из <tex> [L, M] </tex> есть хотя бы <tex> l </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> l </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> l + k </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> m_r = l + k </tex>, иначе <tex> L = M </tex> и <tex> m_l = l + k </tex>.<br>
 
2) <tex> m_l > l  </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [L, M] </tex> имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне <tex> [M, R] </tex>. Значение <tex> l </tex> при этом не меняется, а <tex> L = M </tex>. <br>
 
2) <tex> m_l > l  </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [L, M] </tex> имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне <tex> [M, R] </tex>. Значение <tex> l </tex> при этом не меняется, а <tex> L = M </tex>. <br>
 
3) <tex> m_l < l </tex>. Это означает, что совпадений у суффикса с левого края диапазона поиска с образцом больше, чем у суффикса в позиции <tex> M </tex>. Очевидно, что поиск надо продолжать между <tex> L </tex> и <tex> M </tex>, то есть <tex> R = M </tex>, а новое значение <tex> r = m_l </tex>. <br>
 
3) <tex> m_l < l </tex>. Это означает, что совпадений у суффикса с левого края диапазона поиска с образцом больше, чем у суффикса в позиции <tex> M </tex>. Очевидно, что поиск надо продолжать между <tex> L </tex> и <tex> M </tex>, то есть <tex> R = M </tex>, а новое значение <tex> r = m_l </tex>. <br>
 
Если <tex> m_l < m_r </tex>, то действия аналогичны: <br>
 
Если <tex> m_l < m_r </tex>, то действия аналогичны: <br>
1) <tex> m_r = r </tex>. Это означает, что у каждого суффикса из <tex> [M, R] </tex> есть хотя бы <tex> r </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Можно сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> r </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> r + k </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> m_r = r + k </tex>, иначе <tex> L = M </tex> и <tex> m_l = r + k </tex>. <br>
+
1) <tex> m_r = r </tex>. Это означает, что у каждого суффикса из <tex> [M, R] </tex> есть хотя бы <tex> r </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> r </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> r + k </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> m_r = r + k </tex>, иначе <tex> L = M </tex> и <tex> m_l = r + k </tex>. <br>
 
2) <tex> m_r > r  </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [M, R] </tex> имеет между собой больше совпадений, чем суффикс с правого края с образцом, поэтому продолжим поиск в диапазоне <tex> [L, M] </tex>. Значение <tex> r </tex> при этом не меняется, а <tex> R = M </tex>. <br>
 
2) <tex> m_r > r  </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [M, R] </tex> имеет между собой больше совпадений, чем суффикс с правого края с образцом, поэтому продолжим поиск в диапазоне <tex> [L, M] </tex>. Значение <tex> r </tex> при этом не меняется, а <tex> R = M </tex>. <br>
 
3) <tex> m_r < r </tex>. Это означает, что совпадений у суффикса с правого края диапазона поиска с образцом больше, чем у суффикса в позиции <tex> M </tex>. Очевидно, что поиск надо продолжать между <tex> M </tex> и <tex> R </tex>, то есть <tex> L = M </tex>, а новое значение <tex> l = m_r </tex>. <br>  
 
3) <tex> m_r < r </tex>. Это означает, что совпадений у суффикса с правого края диапазона поиска с образцом больше, чем у суффикса в позиции <tex> M </tex>. Очевидно, что поиск надо продолжать между <tex> M </tex> и <tex> R </tex>, то есть <tex> L = M </tex>, а новое значение <tex> l = m_r </tex>. <br>  

Версия 01:06, 17 мая 2011

Рассмотрим такую задачу: у нас есть образец [math] p [/math], строка [math] s [/math], суффиксный массив [math] array [/math], построенный для строки [math] s [/math]. Необходимо найти все вхождения образца [math] p [/math] в строку [math] s [/math].

Для наглядности рассмотрим такой пример: образец iss , строка mississippi .
Вот суффиксный массив для данной строки:

# суффикс номер суффикса
1 i 11
2 ippi 8
3 issippi 5
4 ississippi 2
5 mississippi 1
6 pi 10
7 ppi 9
8 sippi 7
9 sissippi 4
10 ssippi 6
11 ssissippi 3

Способы поиска

Простейший поиск подстроки

Простейший способ узнать, встречается ли образец в тексте, используя суффиксный массив, это взять первый символ образца и бинарным поиском по суффиксному массиву (массив у нас отсортирован) найти диапазон с суффиксами, начинающимися на такую же букву. Так как все элементы в полученном диапазоне отсортированы, а первые символы одинаковые, то оставшиеся после отбрасывания первого символа суффиксы тоже отсортированы. А значит, можно повторять процедуру сужения диапазона поиска уже по второму, затем третьему и так далее символу образца до получения либо пустого диапазона, либо успешного нахождения всех символов образца. Бинарный поиск работает за время равное [math] O(log|s|) [/math], а сравнение суффикса с образцом не может превышать длины образца. Таким образом время работы алгоритмы [math] O(|p|log|s|)[/math].
В примере поиск будет выглядеть так:

образец iss iss iss
i i i
ippi ippi ippi
issippi issippi issippi
ississippi ississippi ississippi
mississippi mississippi mississippi
pi pi pi
ppi ppi ppi
sippi sippi sippi
sissippi sissippi sissippi
ssippi ssippi ssippi
ssissippi ssissippi ssissippi

В примере показано, какие суффиксы на каждом шаге алгоритма удовлетворяют нашему образцу: на [math] i [/math]-ом шаге суффикс является подходящим, если [math] i [/math] его первых символов совпадают с [math] i [/math] первыми символами образца. Каждый шаг к рассмотрению добавляется лишь один новый символ образца. В графе "образец" розовым цветом выделен префикс образца, который ищется на данном шаге, а под образцом располагаются суффиксы строки, префиксы которых выделены розовым цветом, если на данном шаге суффикс подходит.
Как видно из примера образцу удовлетворяют суффиксы 3 и 4, начинающиеся на 5 и 2 позициях в строке соответственно(позицию можно посмотреть в таблице повыше).

Псевдокод

Поиск диапазона

/*p - образец
n - длина образца
left - левая граница диапазона // изначально равна единице
right - правая граница диапазона // изначально равна длине строки
lh - вспомогательная переменная для определения левой границы диапазона  
rg - вспомогательная переменная для определения правой границы диапазона
find - функция уточнения диапазона
элементы строк и массивов нумеруются с единицы*/
for i = 1 to n {
  lh = n + 1
  rh = 0
  find(left, right, i)
  left = lh
  right = rh
}
if (left != 0 && right != n + 1) { // если диапазон не пуст
  yield left // вывод левой границы диапазона 
  yield right // вывод правой границы диапазона
} else
 yield "No matches" // вывод информации об отсутствии вхождений

Бинарный поиск для уточнения диапазона - функция find(l, r, k)

/*l - левая граница диапазона при поиске
r - правая граница диапазона при поиске
k - номер символа образца, с которым происходит проверка на данном шаге
s - строка
length - длина строки
array - суффиксный массив
x - индекс, стоящий по середине между l и r*/
if (l > r)
  return
x = (l + r) / 2
if (array[x] + k - 1 <= length){
  if (s[array[x] + k - 1] == p[k]){
    if (x < lh)
      lh = x
    if (x > rh)
      rh = x
    find(l, x - 1, k)
    find(x + 1, r, k)
  } else { 
  if (s[array[x] + k - 1] > p[k]) {
    find(l, x - 1, k)
  } else {
  if (s[array[x] + k - 1] < p[k]) {
    find(x + 1, r, k)
  }
} else { 
  find(l, x - 1, k)
  find(x + 1, r, k)
}

Более быстрый поиск

Существует более быстрый алгоритм поиска образца в строке. Для этого используется [math] lcp [/math] (longest common prefix).
Пусть [math] L_p [/math] и [math] R_p [/math] - левая и правая границы диапазона ответов в суффиксном массиве [math] array [/math]. У любого суффикса в пределах этого диапазона есть префикс, который полностью совпадает с образцом.
Пусть [math] L [/math] - левая граница диапазона поиска (изначально равна 0), [math] R [/math] - правая граница диапазона поиска (изначально равна [math] |S| - 1 [/math]), а [math] M = (L + R) / 2 [/math].
Пусть [math] l = lcp(array[L], p) [/math], а [math] r = lcp(array[R], p) [/math]. В самом начале просто посчитаем [math] l [/math] и [math] r [/math] за линейное время, а во время выполнения алгоритма прямой пересчет производиться не будет, изменения будут происходить за [math] O(1) [/math].
Пусть [math] m_l = lcp(array[L], array[M]) [/math], а [math] m_r = lcp(array[M],array[R]) [/math]. Подсчет [math] m_l [/math] и [math] m_r [/math] можно производить за [math] O(1) [/math], если применять алгоритм Фарака-Колтона и Бендера. Любая пара суффиксов из диапазона [math] [L, M] [/math] имеет хотя бы [math] m_l [/math] совпадений в префиксах. Аналогично любая пара суффиксов из диапазона [math] [M, R] [/math] имеет хотя бы [math] m_r [/math] совпадений в префиксах.
Рассмотрим поиск левой границы диапазона ответов [math] L_p [/math].
Сразу проверим образец с суффиксами по краям исходного диапазона поиска [math] L [/math] и [math] R [/math]. Если образец лексикографически больше последнего суффикса [math] array [/math] или меньше первого суффикса, то образец не встречается в строке вовсе, и поиск можно прекратить.
[math] L_p [/math] ищется при помощи бинарного поиска. На каждом шаге поиска нам надо определять, на каком отрезке [math] [L, M] [/math] или [math] [M, R] [/math] надо продолжать поиск границы [math] L_p [/math]. Каждую итерацию бинарного поиска будем сравнивать [math] m_l [/math] и [math] m_r [/math]. Если [math] m_l \ge m_r [/math], то возможно одно из трех:
1) [math] m_l = l [/math]. Это означает, что у каждого суффикса из [math] [L, M] [/math] есть хотя бы [math] l [/math] совпадений с образцом. Проверим суффикс в позиции [math] M [/math], так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции [math] M [/math] начиная с [math] l [/math]-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге [math] k [/math] получим несоответствие. В первом случае [math] R = M [/math] и [math] r = |p| [/math], так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ [math] l + k [/math] у образца меньше, чем у суффикса, то [math] R = M [/math] и [math] m_r = l + k [/math], иначе [math] L = M [/math] и [math] m_l = l + k [/math].
2) [math] m_l \gt l [/math]. Это означает, что каждая пара суффиксов из диапазона [math] [L, M] [/math] имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне [math] [M, R] [/math]. Значение [math] l [/math] при этом не меняется, а [math] L = M [/math].
3) [math] m_l \lt l [/math]. Это означает, что совпадений у суффикса с левого края диапазона поиска с образцом больше, чем у суффикса в позиции [math] M [/math]. Очевидно, что поиск надо продолжать между [math] L [/math] и [math] M [/math], то есть [math] R = M [/math], а новое значение [math] r = m_l [/math].
Если [math] m_l \lt m_r [/math], то действия аналогичны:
1) [math] m_r = r [/math]. Это означает, что у каждого суффикса из [math] [M, R] [/math] есть хотя бы [math] r [/math] совпадений с образцом. Проверим суффикс в позиции [math] M [/math], так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции [math] M [/math] начиная с [math] r [/math]-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге [math] k [/math] получим несоответствие. В первом случае [math] R = M [/math] и [math] r = |p| [/math], так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ [math] r + k [/math] у образца меньше, чем у суффикса, то [math] R = M [/math] и [math] m_r = r + k [/math], иначе [math] L = M [/math] и [math] m_l = r + k [/math].
2) [math] m_r \gt r [/math]. Это означает, что каждая пара суффиксов из диапазона [math] [M, R] [/math] имеет между собой больше совпадений, чем суффикс с правого края с образцом, поэтому продолжим поиск в диапазоне [math] [L, M] [/math]. Значение [math] r [/math] при этом не меняется, а [math] R = M [/math].
3) [math] m_r \lt r [/math]. Это означает, что совпадений у суффикса с правого края диапазона поиска с образцом больше, чем у суффикса в позиции [math] M [/math]. Очевидно, что поиск надо продолжать между [math] M [/math] и [math] R [/math], то есть [math] L = M [/math], а новое значение [math] l = m_r [/math].
Бинарный поиск будет работать до тех пор, пока [math] R - L \gt 1 [/math]. После этого можно присвоить левой границе диапазона ответов [math] L_p = R [/math] и переходить к поиску правой границы диапазона ответов [math] R_p [/math].
Рассуждения при поиске [math] R_p [/math] аналогичны, только нужно не забыть изменить границы поиска на изначальные [math] L = 0 [/math] и [math] R = |s| - 1 [/math].
Таким образом часть бинарного поиска мы сделаем при сравнении нескольких [math] lcp [/math] между собой за [math] O(1) [/math], а если уж и дойдет до сравнения символов, то любой символ [math] p [/math] сравнивается не более одного раза(при сравнении мы берем [math] max(l, r) [/math], а значит никогда не возвращаемся назад). В самом начале мы посчитали [math] l [/math] и [math] r [/math] за [math] O(p) [/math]. В итоге получаем сложность алгоритма [math] O(p + log(s)) [/math]. Правда нужен предподсчет, чтобы можно было брать [math] lcp [/math] для двух любых суффиксов [math] array [/math] за [math] O(1) [/math].

Литература