Алгоритм Shift-Or — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
==Алгоритм==
 
==Алгоритм==
  
Пусть p – шаблон длины n, t – текст длины m.
+
Пусть <tex>p</tex> – шаблон длины <tex>n</tex>, <tex>t</tex> – текст длины <tex>m</tex>.
  
Нам потребуется двоичный массив M размером n * (m + 1), в котором индекс i пробегает значения от 1 до n, а индекс j – от 0 до m.
+
Нам потребуется двоичный массив <tex>M</tex> размером <tex>n * (m + 1)</tex>, в котором индекс <tex>i</tex> пробегает значения от <tex>1</tex> до <tex>n</tex>, а индекс <tex>j</tex> – от <tex>0</tex> до <tex>m</tex>.
M(i,j) ={1, если первые i символов p точно совпадают с i символами t, кончаясь на позиции j; 0 — иначе}
+
<tex>M[i][j] =</tex> { <tex>1</tex>, если первые <tex>i</tex> символов <tex>p</tex> точно совпадают с <tex>i</tex> символами <tex>t</tex>, кончаясь на позиции <tex>j</tex>; <tex>0</tex> — иначе }
  
То есть M(i,j) = 1 тогда и только тогда, когда p[1..i] = t[j – i + 1..j].
+
То есть <tex>M[i][j] = 1</tex> тогда и только тогда, когда <tex>p[1..i] = t[j – i + 1..j]</tex>.
Например, пусть t = california, p = for. Тогда M(1, 5) = M(2, 6) = M(3, 7) = 1, остальные M(i, j) = 0.  
+
Например, пусть <tex>t = california</tex>, <tex>p = for</tex>. Тогда <tex>M[1][5] = M[2][6] = M[3][7] = 1</tex>, остальные <tex>M[i][j] = 0</tex>.  
Получаем, что  элементы, равные 1, в строчке I показывают все места в t, где заканчиватся копии p[1..i], а столбец j показывает все префиксы p, которые заканчиваются в позиции j строки t.  
+
Получаем, что  элементы, равные <tex>1</tex>, в строчке <tex>i</tex> показывают все места в <tex>t</tex>, где заканчиватся копии <tex>p[1..i]</tex>, а столбец <tex>j</tex> показывает все префиксы <tex>p</tex>, которые заканчиваются в позиции <tex>j</tex> строки <tex>t</tex>.  
M(n, j) = 1 тогда, когда вхждение p заканчивается в позиции j строки t.  
+
<tex>M[n][j] = 1</tex> тогда, когда вхождение <tex>p</tex> заканчивается в позиции <tex>j</tex> строки <tex>t</tex>.  
То есть вычисление последней строки M решает задачу точного совпадения.  
+
То есть вычисление последней строки <tex>M</tex> решает задачу точного совпадения.
Построение массива M.
+
Создадим для каждого символа алфавита x двоичный вектор U(x) длины n. U(x) равно 1 в тех позициях p, где стоит символ x.  
+
Построение массива <tex>M</tex>.
Например, p = abacdeab, U(a) = 10100010
+
Создадим для каждого символа алфавита <tex>x</tex> двоичный вектор <tex>U(x)</tex> длины <tex>n</tex>. <tex>U(x)</tex> равно <tex>1</tex> в тех позициях <tex>p</tex>, где стоит символ <tex>x</tex>.  
 +
Например, <tex>p = abacdeab</tex>, <tex>U(a) = 10100010</tex>
  
Определим Bit-Shift(j) как вектор, полученный сдвигом вектора для столбца j вниз на одну позицию и записью 1 в первой позиции. Старое значение в позиции n теряется.  
+
Определим <tex>Bit-Shift(j)</tex> как вектор, полученный сдвигом вектора для столбца <tex>j</tex> вниз на одну позицию и записью <tex>1</tex> в первой позиции. Старое значение в позиции <tex>n</tex> теряется.  
То есть Bit-Shift(j) состоит из 1, к которой приписаны первые n – 1 битов столбца j.
+
То есть <tex>Bit-Shift(j)</tex> состоит из <tex>1</tex>, к которой приписаны первые <tex>n – 1</tex> битов столбца <tex>j</tex>.
(0, 0, 0, 1, 0, 1, 1, 0, 1) → (1, 0, 0, 1, 0, 1, 1, 0)
+
<tex>(0, 0, 0, 1, 0, 1, 1, 0, 1) → (1, 0, 0, 1, 0, 1, 1, 0)</tex>
  
Из определения, нулевой столбец M состоит из нулей. Элементы любого другого столбца j > 0 получаются из столбца j – 1 и вектора U для символа t[j]. А именно, вектор для столбца j получается операцией побитового логического умножения and вектора Bit-Shift(j – 1) и вектора U(t[j]).  
+
Из определения, нулевой столбец <tex>M</tex> состоит из нулей. Элементы любого другого столбца <tex>j > 0</tex> получаются из столбца <tex>j – 1</tex> и вектора <tex>U</tex> для символа <tex>t[j]</tex>. А именно, вектор для столбца <tex>j</tex> получается операцией побитового логического умножения <tex>and</tex> вектора <tex>Bit-Shift(j – 1)</tex> и вектора <tex>U(t[j])</tex>.  
M(j) = Bit-Shift(j – 1) and U(t[j])
+
<tex>M[j] = Bit-Shift(j – 1) and U(t[j])</tex>
 
Например, …  
 
Например, …  
  

Версия 21:34, 6 июня 2014

В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом [math]Shift-Or[/math], хотя, исходя из самого алгоритма, естественней назвать его [math]Shift-And[/math]. Также алгоритм известен как bitap алгоритм и алгоритм Беза-Йетса-Гоннета.

Алгоритм

Пусть [math]p[/math] – шаблон длины [math]n[/math], [math]t[/math] – текст длины [math]m[/math].

Нам потребуется двоичный массив [math]M[/math] размером [math]n * (m + 1)[/math], в котором индекс [math]i[/math] пробегает значения от [math]1[/math] до [math]n[/math], а индекс [math]j[/math] – от [math]0[/math] до [math]m[/math]. [math]M[i][j] =[/math] { [math]1[/math], если первые [math]i[/math] символов [math]p[/math] точно совпадают с [math]i[/math] символами [math]t[/math], кончаясь на позиции [math]j[/math]; [math]0[/math] — иначе }

То есть [math]M[i][j] = 1[/math] тогда и только тогда, когда [math]p[1..i] = t[j – i + 1..j][/math]. Например, пусть [math]t = california[/math], [math]p = for[/math]. Тогда [math]M[1][5] = M[2][6] = M[3][7] = 1[/math], остальные [math]M[i][j] = 0[/math]. Получаем, что элементы, равные [math]1[/math], в строчке [math]i[/math] показывают все места в [math]t[/math], где заканчиватся копии [math]p[1..i][/math], а столбец [math]j[/math] показывает все префиксы [math]p[/math], которые заканчиваются в позиции [math]j[/math] строки [math]t[/math]. [math]M[n][j] = 1[/math] тогда, когда вхождение [math]p[/math] заканчивается в позиции [math]j[/math] строки [math]t[/math]. То есть вычисление последней строки [math]M[/math] решает задачу точного совпадения.

Построение массива [math]M[/math]. Создадим для каждого символа алфавита [math]x[/math] двоичный вектор [math]U(x)[/math] длины [math]n[/math]. [math]U(x)[/math] равно [math]1[/math] в тех позициях [math]p[/math], где стоит символ [math]x[/math]. Например, [math]p = abacdeab[/math], [math]U(a) = 10100010[/math]

Определим [math]Bit-Shift(j)[/math] как вектор, полученный сдвигом вектора для столбца [math]j[/math] вниз на одну позицию и записью [math]1[/math] в первой позиции. Старое значение в позиции [math]n[/math] теряется. То есть [math]Bit-Shift(j)[/math] состоит из [math]1[/math], к которой приписаны первые [math]n – 1[/math] битов столбца [math]j[/math]. [math](0, 0, 0, 1, 0, 1, 1, 0, 1) → (1, 0, 0, 1, 0, 1, 1, 0)[/math]

Из определения, нулевой столбец [math]M[/math] состоит из нулей. Элементы любого другого столбца [math]j \gt 0[/math] получаются из столбца [math]j – 1[/math] и вектора [math]U[/math] для символа [math]t[j][/math]. А именно, вектор для столбца [math]j[/math] получается операцией побитового логического умножения [math]and[/math] вектора [math]Bit-Shift(j – 1)[/math] и вектора [math]U(t[j])[/math]. [math]M[j] = Bit-Shift(j – 1) and U(t[j])[/math] Например, …

Псевдокод

   algorithm bitap_search(text : string, pattern : string) returns string
       m := length(pattern)
       if m == 0
           return text
       /* Initialize the bit array R. */
       R := new array[m+1] of bit, initially all 0
       R[0] = 1
       for i = 0; i < length(text); i += 1:
           /* Update the bit array. */
           for k = m; k >= 1; k -= 1:
               R[k] = R[k-1] & (text[i] == pattern[k-1])
           if R[m]:
               return (text+i - m) + 1
       return nil

Корректность

Докажем, что метод Shift-Or правильно вычисляет элементы массива M. Заметим, что для любого I > 1элемент M(i, j) = 1 т и тт, когда p[1..i – 1] совпадает с t[j – i + 1..j], а символ p[i] совпадает с t[j]. Первое условие выполнено, когда элемент массива M(i – 1, j – 1) = 1, а второе — когда i-ый бит вектора U для символа t[j] равен 1. После сдвига столбца j – 1 алгоритм логически умножает элемент M(i – 1, j – 1) столбца j – 1 на элемент i вектора U(t[j]). Следовательно, все элементы M вычисляются правильно и алгоритм находит все вхождения образца в текст.

Эффективность

Сложность алгоритма составляет O(nm), на препроцессинг — построение массива U требуется O(сигма*n) операций и памяти. Если же n не превышает длину машинного слова, то сложность получается O(m) и O(n + сигма) соответсвенно.