Редактирование: Асимптотика гипергеометрических последовательностей
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 113: | Строка 113: | ||
<tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex> | <tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex> | ||
− | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\ | + | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\cfrac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>. |
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | '''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | ||
Строка 124: | Строка 124: | ||
<tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cdot \cfrac{n-\alpha}{n+1}</tex> | <tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cdot \cfrac{n-\alpha}{n+1}</tex> | ||
− | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4 \cdot s)^{\ | + | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4 \cdot s)^{\cfrac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\cfrac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для [[Числа Каталана|чисел Каталана]]. |
== См. также == | == См. также == |