Байесовская классификация — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 112: Строка 112:
  
 
  '''from''' sklearn '''import''' datasets
 
  '''from''' sklearn '''import''' datasets
 +
'''from''' sklearn.metrics '''import''' f1_score, accuracy_score
 +
'''from''' sklearn.naive_bayes '''import''' GaussianNB
 
  iris = datasets.load_iris()
 
  iris = datasets.load_iris()
'''from''' sklearn.naive_bayes '''import''' GaussianNB
 
 
  gnb = GaussianNB()
 
  gnb = GaussianNB()
  y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
+
  pred = gnb.fit(iris.data, iris.target).predict(iris.data)
  '''print'''(''"Number of mislabeled points out of a total %d points : %d"''
+
accuracy = accuracy_score(iris.target, pred)
      % (iris.data.shape[0],(iris.target != y_pred).sum()))
+
f1 = f1_score(iris.target, pred, average="micro")
 +
  '''print'''(''"accruracy:"'', accuracy, ''"f1:"'', f1)
  
 
Вывод:
 
Вывод:
  Number of mislabeled points out of a total 150 points : 6
+
  accruracy: 0.96 f1: 0.96
  
 
==См. также==
 
==См. также==

Версия 04:58, 3 апреля 2019

Вероятностная постановка задачи классификации

Пусть $X$ множество объектов, $Y$ конечное множество имён классов, множество $X \times Y$ является вероятностным пространством с плотностью распределения $p(x,y)=P(y)p(x|y)$. Вероятности появления объектов каждого из классов $P_y=P(y)$ называются априорными вероятностями классов. Плотности распределения $p_y(x)=p(x|y)$ называются функциями правдоподобия классов.

Вероятностная постановка задачи классификации разделяется на две независимые подзадачи:

  • Имеется простая выборка $X^l=(x_i, y_i)^l_{i=1}$ из неизвестного распределения $p(x,y)=P_yp_y(x)$. Требуется построить эмпирические оценки априорных вероятностей $P'_y$ и функций правдоподобия $p'_y(x)$ для каждого из классов $y \in Y$.
  • По известным плотностям распределения $p_y(x)$ и априорным вероятностям $P_y$ всех классов $y \in Y$ построить алгоритм $a(x)$, минимизирующий вероятность ошибочной классификации.

Априорные вероятности классов $P_y$ можно оценить согласно закону больших чисел, тогда частота появления объектов каждого из классов равна $P'_y=\frac{l_y}{l}$ где $l_y=|X^l_y|, y \in Y$ сходится по вероятности к $P_y$ при $l_y \to \infty$. Чем больше длина выборки, тем точнее выборочная оценка $P'_y$.


Оптимальный байесовский классификатор

Рассмотрим произвольный алгоритм $a:X \to Y$. Он разбивает множество $X$ на не пересекающиеся области $A_y=\{x \in X | a(x) = y\}, y \in Y$. Вероятность того,что появится объект класса $y$ и алгоритм $a$ отнесёт его к классу $s$, равна $P_yP(A_s|y)$. Каждой паре $(y,s) \in Y \times Y$ поставим в соответствие величину потери $\lambda_{ys}$ при отнесении объекта класса $y$ к классу $s$.


Определение:
Функционал среднего риска — ожидаемая величина потери при классификации объектов алгоритмом $a$: [math] R(a) = \displaystyle\sum_{y \in Y}\sum_{s \in Y}\lambda_{ys}P_yP(A_s|y) [/math]


Теорема (об оптимальности байесовского классификатора):
Если известны априорные вероятности $P_y$ и функции правдоподобия $p_y(x)$,

то минимум среднего риска $R(a)$ достигается алгоритмом

[math] a(x) = \displaystyle\arg\min_{s \in Y}\sum_{y \in Y}\lambda_{ys}P_yp_y(x) [/math]
Доказательство:
[math]\triangleright[/math]

Для произвольного $t \in Y$ запишем функционал среднего риска:

[math] R(a)=\displaystyle\sum_{y \in Y}\sum_{s \in Y}\lambda_{ys}P_yP(A_s|y) = \sum_{y \in Y}\lambda_{yt}P_yP(A_t|y) + \sum_{s \in Y\setminus\{t\} }\sum_{y \in Y}\lambda_{ys}P_yP(A_s|y). [/math]

Применив формулу полной вероятности, $P(A_t \mid y) = 1 −\displaystyle\sum_{ s \in Y \setminus \{t\} }P(A_s \mid y)$, получим:

[math] R(a) = \displaystyle\sum_{y \in Y}\lambda_{yt}P_y + \sum_{ s \in Y \setminus \{t\} } \sum_{y \in Y} (\lambda_{ys} - \lambda_{yt})P_yP(A_s|y) = [/math]

[math] = const(a) + \displaystyle\sum_{ s \in Y \setminus \{t\} } \int_{A_s}\sum_{y \in Y} (\lambda_{ys}−\lambda_{yt})P_yp_y(x)dx. [/math]

Введём для сокращения записи обозначение $g_s(x) = \displaystyle\sum_{y \in Y}\lambda_{ys}P_yp_y(x)$, тогда $R(a) = const(a) + \displaystyle\sum_{ s \in Y \setminus \{t\} }\int_{A_s}(g_s(x)−g_t(x))dx$.

Минимум интегрла достигается, когда $A_s$ совпадает с областью неположительности подынтегрального выражения. [math] A_s=\{x \in X \mid g_s(x) \leq g_t(x), \forall t \in Y, t \leq s\}. [/math]

С другой стороны, $A_s=\{x \in X \mid a(x) = s\}$. Значит, $a(x) = s$ тогда и только тогда, когда

$s= \displaystyle\arg\min_{t \in Y}g_t(x)$.
[math]\triangleleft[/math]


Наивный байесовский классификатор

Допустим, что объекты $x \in X$ описываются $n$ числовыми признаками $f_j:X→R,j= 1,...,n$. Обозначим через $x = (\xi_1,...,\xi_n)$ произвольный элемент пространства объектов $X=R^n$, где $\xi_j=f_j(x)$.

Предположим, что признаки $f_1(x),...,f_n(x)$ являются независимыми случайными величинами. Следовательно, функции правдоподобия классов представимы в виде:

[math] p_y(x) = \displaystyle\prod^n_{i=1}p_{yi}(\xi_i) [/math]

где $p_{yj}(\xi_j)$ плотность распределения значений $j$-го признака для класса $y$. Алгоритмы классификации исходящие из этого предположения, называются наивными байесовскими.

Подставим эмпирические оценки одномерных плотностей в байесовский классификатор. Получим алгоритм:

[math] a(x) = \displaystyle\arg\max_{y \in Y}(\ln\lambda_yP'_y + \sum^n_{j=1}\ln p'_{yj}(\xi_j)). [/math]

Основные его преимущества — простота реализации и низкие вычислительные затраты при обучении и классификации. В тех редких случаях, когда признаки почти независимы, наивный байесовский классификатор близок к оптимальному. Достаточно малое количество данных необходимо для обучения, оценки параметров и классификации.

Основной его недостаток — низкое качество классификации в общем случае.

Пример кода scikit-learn

Классификатор GaussianNB реализует наивный байесовский классификатор в предположении что изначальное распределение было гауссовым:

[math] P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma^2_y}}\exp(-\frac{(x_i - \mu_y)^2}{2\sigma^2_y}) [/math]

from sklearn import datasets
from sklearn.metrics import f1_score, accuracy_score
from sklearn.naive_bayes import GaussianNB
iris = datasets.load_iris()
gnb = GaussianNB()
pred = gnb.fit(iris.data, iris.target).predict(iris.data)
accuracy = accuracy_score(iris.target, pred)
f1 = f1_score(iris.target, pred, average="micro")
print("accruracy:", accuracy, "f1:", f1)

Вывод:

accruracy: 0.96 f1: 0.96

См. также

Источники информации