Биномиальная куча — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (добавлена категория)
(Исправлены две пунктуационные ошибки.)
 
(не показано 11 промежуточных версий 3 участников)
Строка 5: Строка 5:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Биномиальное дерево <tex>B_k</tex>''' (англ. ''binomial tree'') {{---}} [[Дерево, эквивалентные определения|дерево]], определяемое для каждого <tex>k = 0, 1, 2, \dots </tex> следующим образом: <tex>B_0</tex> {{---}} дерево, состоящее из одного узла; <tex>B_k</tex> состоит из двух биномиальных деревьев <tex>B_{k-1}</tex>, связанны вместе таким образом, что корень одного из них является дочерним узлом корня второго дерева.
+
'''Биномиальное дерево <tex>B_k</tex>''' (англ. ''binomial tree'') {{---}} [[Дерево, эквивалентные определения|дерево]], определяемое для каждого <tex>k = 0, 1, 2, \dots </tex> следующим образом: <tex>B_0</tex> {{---}} дерево, состоящее из одного узла; <tex>B_k</tex> состоит из двух биномиальных деревьев <tex>B_{k-1}</tex>, связанных вместе таким образом, что корень одного из них является дочерним узлом корня второго дерева.
 
}}
 
}}
  
Строка 102: Строка 102:
  
 
[[Файл:binHeapExample1_1.png|370px]]
 
[[Файл:binHeapExample1_1.png|370px]]
 +
 +
При использовании указателя на биномиальное дерево, которое содержит минимальный элемент, время для этой операции может быть сведено к <tex>O(1)</tex>. Указатель должен обновляться при выполнении любой операции, кроме <tex>\mathrm{getMinimum}</tex>. Это может быть сделано за <tex>O(\log n)</tex>, не ухудшая время работы других операций.
  
 
=== merge ===
 
=== merge ===
Строка 164: Строка 166:
 
Рассмотрим пошагово алгоритм:
 
Рассмотрим пошагово алгоритм:
 
* Найдем биномиальное дерево с минимальным корневым значением. Предположим, что это дерево <tex>B_k</tex>. Время работы этого шага алгоритма <tex>\Theta(\log n)</tex>.
 
* Найдем биномиальное дерево с минимальным корневым значением. Предположим, что это дерево <tex>B_k</tex>. Время работы этого шага алгоритма <tex>\Theta(\log n)</tex>.
* Удаляем дерево <tex>B_k</tex> из кучи <tex>H</tex>. Иными словами удаляем его корень из списка корней кучи. Это можно сделать за время <tex>O(1)</tex>.
+
* Удаляем дерево <tex>B_k</tex> из кучи <tex>H</tex>. Иными словами, удаляем его корень из списка корней кучи. Это можно сделать за время <tex>O(1)</tex>.
 
* Пусть <tex>H'</tex> {{---}} куча детей найденного корня. При этом мы для каждого из ребенка устанавливаем указатель на предка равным <tex>null</tex>. После этого сливаем кучу <tex>H'</tex> c <tex>H</tex> за <tex>\Omega(\log n)</tex>.
 
* Пусть <tex>H'</tex> {{---}} куча детей найденного корня. При этом мы для каждого из ребенка устанавливаем указатель на предка равным <tex>null</tex>. После этого сливаем кучу <tex>H'</tex> c <tex>H</tex> за <tex>\Omega(\log n)</tex>.
  
Процедура выполняется за время <tex>\Theta(\log n)</tex>, поскольку всего в списке <tex>\Theta(\log n)</tex> корней биномиальных деревьев. И всего у найденного дерева <tex> k </tex> порядка (с минимальным значением ключа) ровно <tex> k </tex> детей, то сложность перебора этих детей будет тоже <tex>\Theta(\log n)</tex>. А процесс слияния выполняется за <tex>\Omega(\log n)</tex>. Таким образом операция выполняется <tex>\Theta(\log n)</tex>.
+
Процедура выполняется за время <tex>\Theta(\log n)</tex>, поскольку всего в списке <tex>\Theta(\log n)</tex> корней биномиальных деревьев. И всего у найденного дерева <tex> k </tex> порядка (с минимальным значением ключа) ровно <tex> k </tex> детей, то сложность перебора этих детей будет тоже <tex>\Theta(\log n)</tex>. А процесс слияния выполняется за <tex>\Omega(\log n)</tex>. Таким образом, операция выполняется <tex>\Theta(\log n)</tex>.
  
 
[[Файл:BinHeapExampleNew31.png|700px|Примеp извлечения минимума]]
 
[[Файл:BinHeapExampleNew31.png|700px|Примеp извлечения минимума]]
Строка 228: Строка 230:
 
</code>
 
</code>
  
=== Конфлюэнтная персистентность ===
+
=== Персистентность ===
Благодаря поддержке операции <math>\mathrm {merge}</math> биномиальная куча является конфлюэнтной структурой данных, что позволяет получать новую версию путём сливания старых.
+
Биноминальную кучу можно сделать [[Персистентные структуры данных|персистентной]] при реализации на односвязных списках<ref>[https://github.com/kgeorgiy/okasaki/tree/master/Okasaki/Chapter3 Github {{---}} реализация на Haskell]</ref>.  Для этого будем хранить список корней в порядке возрастания ранга, а детей будем хранить по убыванию ранга. Каждый родитель будет знать ребенка с большим рангом, который является головой списка детей, но ребенок не будет знать родителя. Односвязанные списки хороши с точки зрения функционального программирования, так как голова списка не будет достижима из потомков. Тогда при добавлениии новой версии в голову или удалении объявляя другую вершину новой головой мы не будем терять старые версии, которые останутся на месте, так как фактически односвязный список с операциями на голове это [[Персистентный стек|персистентный стек]], который является полностью персистентной функциональной структурой. При этом каждая версия будет поддерживать возможность изменения, что является полным уровнем персистентности. Также поддерживается операция <tex>\mathrm {merge}</tex> для всех версий биномиальных куч, что позволяет получать новую версию путём сливания старых. Это добавляет конфлюэнтный уровень персистентности.
 
 
  
 
== См. также ==
 
== См. также ==
Строка 238: Строка 239:
 
* [[Куча Бродала-Окасаки]]
 
* [[Куча Бродала-Окасаки]]
  
 +
==Примечания==
 +
 +
<references />
 
== Источники информации ==
 
== Источники информации ==
 
* [http://ru.wikipedia.org/wiki/Биномиальная_куча Википедия {{---}} Биномиальная куча]
 
* [http://ru.wikipedia.org/wiki/Биномиальная_куча Википедия {{---}} Биномиальная куча]
 
* [http://en.wikipedia.org/wiki/Binomial_heap Wikipedia {{---}} Binomial heap]
 
* [http://en.wikipedia.org/wiki/Binomial_heap Wikipedia {{---}} Binomial heap]
 
* [http://www.intuit.ru/department/algorithms/dscm/7/ INTUIT.ru {{---}} Биномиальные кучи]
 
* [http://www.intuit.ru/department/algorithms/dscm/7/ INTUIT.ru {{---}} Биномиальные кучи]
 +
* [http://www.lektorium.tv/lecture/?id=14234 Лекция А.С. Станкевича по приоритетным очередям]
 
* Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 538—558. — ISBN 5-8489-0857-4
 
* Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 538—558. — ISBN 5-8489-0857-4
  

Текущая версия на 14:31, 17 октября 2015

Пример биномиальных деревьев [math]B_0, B_2, B_3[/math]

Биномиальное дерево[править]

Определение:
Биномиальное дерево [math]B_k[/math] (англ. binomial tree) — дерево, определяемое для каждого [math]k = 0, 1, 2, \dots [/math] следующим образом: [math]B_0[/math] — дерево, состоящее из одного узла; [math]B_k[/math] состоит из двух биномиальных деревьев [math]B_{k-1}[/math], связанных вместе таким образом, что корень одного из них является дочерним узлом корня второго дерева.


Свойства биномиальных деревьев[править]

Утверждение:
Биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет [math]2^k[/math] узлов.
[math]\triangleright[/math]

Докажем по индукции:

База [math]k = 1[/math] — верно. Пусть для некоторого [math]k [/math] условие верно, то докажем, что для [math]k + 1[/math] это также верно:

Так как в дереве порядка [math]k+1[/math] вдвое больше узлов, чем в дереве порядка [math]k[/math], то дерево порядка [math]k+1[/math] имеет [math]2^k \cdot 2 = 2^{k+1}[/math] узлов. Переход доказан, то биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет [math]2^k[/math] узлов.
[math]\triangleleft[/math]
Утверждение:
Биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет высоту [math]k[/math].
[math]\triangleright[/math]

Докажем по индукции:

База [math]k = 1[/math] — верно. Пусть для некоторого [math]k [/math] условие верно, то докажем, что для [math]k + 1[/math] это также верно:

Так как в дереве порядка [math]k+1[/math] высота больше на [math]1[/math] (так как мы подвешиваем к текущему дереву дерево того же порядка), чем в дереве порядка [math]k[/math], то дерево порядка [math]k+1[/math] имеет высоту [math]k + 1[/math]. Переход доказан, то биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет высоту [math]k[/math].
[math]\triangleleft[/math]
Утверждение:
Биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет ровно [math] k\choose i[/math] узлов на высоте [math]i[/math].
[math]\triangleright[/math]

Докажем по индукции:

База [math]k = 1[/math] — верно. Пусть для некоторого [math]k [/math] условие верно, то докажем, что для [math]k + 1[/math] это также верно:

Рассмотрим [math]i[/math] уровень дерева [math]B_{k+1}[/math]. Дерево [math]B_{k+1}[/math] было получено подвешиванием одного дерева порядка [math]k[/math] к другому. Тогда на [math]i[/math] уровне дерева [math]B_{k+1}[/math] всего узлов [math] {k\choose i} [/math] [math]+[/math] [math]{k\choose {i - 1}}[/math], так как от подвешенного дерева в дерево порядка [math]k+1[/math] нам пришли узлы глубины [math]i-1[/math]. То для [math]i[/math]-го уровня дерева [math]B_{k+1}[/math] количество узлов [math] {k\choose i}[/math] [math]+[/math] [math]{k\choose {i - 1}}[/math] [math]=[/math] [math]{{k + 1}\choose i} [/math]. Переход доказан, то биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет ровно [math] {k\choose i}[/math] узлов на высоте [math]i[/math].
[math]\triangleleft[/math]
Утверждение:
Биномиальное дерево [math]B_k[/math] с [math]n[/math] вершинами имеет корень степени [math]k[/math]; степень всех остальных вершин меньше степени корня биномиального дерева;
[math]\triangleright[/math]
Так как в дереве порядка [math]k+1[/math] степень корня больше на [math]1[/math], чем в дереве порядка [math]k[/math], а в дереве нулевого порядка степень корня [math]0[/math], то дерево порядка [math]k[/math] имеет корень степени [math]k[/math]. И так как при таком увеличении порядка (при переходе от дерева порядка [math]k[/math] к [math]k+1[/math]) в полученном дереве лишь степень корня возрастает, то доказываемый инвариант, то есть степень корня больше степени остальных вершин, не будет нарушаться.
[math]\triangleleft[/math]
Утверждение:
В биномиальном дереве [math]B_k[/math] с [math]n[/math] вершинами максимальная степень произвольного узла равна [math]\log n[/math].
[math]\triangleright[/math]
Докажем это утверждение для корня. Степень остальных вершин меньше по предыдущему свойству. Так как степень корня дерева порядка [math]k[/math] равна [math]k[/math], а узлов в этом дереве [math]n = 2^k[/math], то прологарифмировав обе части получаем, что [math]k=O(\log n)[/math], то степень произвольного узла не более [math]\log n[/math].
[math]\triangleleft[/math]

Биномиальная куча[править]

Определение:
Биномиальная куча (англ. binomial heap) представляет собой множество биномиальных деревьев, которые удовлетворяют следующим свойствам:
  • каждое биномиальное дерево в куче подчиняется свойству неубывающей кучи: ключ узла не меньше ключа его родительского узла (упорядоченное в соответствии со свойством неубывающей кучи дерево),
  • для любого неотрицательного целого [math]k[/math] найдется не более одного биномиального дерева, чей корень имеет степень [math]k[/math].


Представление биномиальных куч[править]

Поскольку количество детей у узлов варьируется в широких пределах, ссылка на детей осуществляется через левого ребенка, а остальные дети образуют односвязный список. Каждый узел в биномиальной куче представляется набором полей:

  • [math]key[/math] — ключ (вес) элемента,
  • [math]parent[/math] — указатель на родителя узла,
  • [math]child[/math] — указатель на левого ребенка узла,
  • [math]sibling[/math] — указатель на правого брата узла,
  • [math]degree[/math] — степень узла (количество дочерних узлов данного узла).

Корни деревьев, из которых состоит куча, содержатся в так называемом списке корней, при проходе по которому степени соответствующих корней находятся в возрастающем порядке. Доступ к куче осуществляется ссылкой на первый корень в списке корней.

Операции над биномиальными кучами[править]

Рассмотрим операции, которые можно производить с биномиальной кучей. Время работы указано в таблице:

Операция Время работы
[math]\mathrm{insert}[/math] [math]O(\log n)[/math]
[math]\mathrm{getMinimum}[/math] [math]O(\log n)[/math]
[math]\mathrm{extractMin}[/math] [math]\Theta(\log n)[/math]
[math]\mathrm{merge}[/math] [math]\Omega(\log n)[/math]
[math]\mathrm{decreaseKey}[/math] [math]\Theta(\log n)[/math]
[math]\mathrm{delete}[/math] [math]\Theta(\log n)[/math]

Обозначим нашу кучу за [math]H[/math]. То пусть [math]H.head[/math] — указатель на корень биномиального дерева минимального порядка этой кучи. Изначально [math]H.head = null[/math], то есть куча не содержит элементов.

getMinimum[править]

Для нахождения минимального элемента надо найти элемент в списке корней с минимальным значением (предполагается, что ключей, равных [math]\infty[/math], нет).

Так как корней в этом списке не более [math]\lfloor \log n \rfloor + 1[/math], то операция выполняется за [math]O(\log n)[/math].

При вызове этой процедуры для кучи, изображенной на картинке ниже, будет возвращен указатель на вершину с ключом [math]1[/math].

BinHeapExample1 1.png

При использовании указателя на биномиальное дерево, которое содержит минимальный элемент, время для этой операции может быть сведено к [math]O(1)[/math]. Указатель должен обновляться при выполнении любой операции, кроме [math]\mathrm{getMinimum}[/math]. Это может быть сделано за [math]O(\log n)[/math], не ухудшая время работы других операций.

merge[править]

Эта операция, соединяющая две биномиальные кучи в одну, используется в качестве подпрограммы большинством остальных операций.

Вот в чем состоит ее суть: пусть есть две биномиальные кучи с [math]H[/math] и [math]H'[/math]. Размеры деревьев в кучах соответствуют двоичным числам [math]m[/math] и [math]n[/math], то есть при наличии дерева соответствующего порядка в этом разряде числа стоит единица, иначе ноль. При сложении столбиком в двоичной системе происходят переносы, которые соответствуют слияниям двух биномиальных деревьев [math]B_{k-1}[/math] в дерево [math]B_{k}[/math]. Надо только посмотреть, в каком из сливаемых деревьев корень меньше, и считать его верхним (пример работы для одного случая приведен на рисунке справа; в другом случае подвешиваем наоборот).

Пример слияние двух деревьев одного порядка

Работа этой процедуры начинается с соединения корневых списков куч в единый список, в котором корневые вершины идут в порядке неубывания их степеней.

В получившемся списке могут встречаться пары соседних вершин одинаковой степени. Поэтому мы начинаем соединять деревья равной степени и делаем это до тех пор, пока деревьев одинаковой степени не останется. Этот процесс соответствует сложению двоичных чисел столбиком, и время его работы пропорционально числу корневых вершин, то есть операция выполняется за [math]\Omega(\log n)[/math].


BinomialHeap merge(H1 : BinomialHeap, H2 : BinomialHeap):
   if H1 == null 
       return H2 
   if H2 == null 
       return H1  
   H.head = null                     // H — результат слияния 
   curH = H.head                     // слияние корневых списков 
   curH1 = H1.head
   curH2 = H2.head
   while curH1 != null and curH2 != null 
       if curH1.degree < curH2.degree 
           curH.sibling = curH1
           curH = curH1
           curH1 = curH1.sibling
      else 
           curH.sibling = curH2
           curH = curH2
           curH2 = curH2.sibling
   if curH1 == null 
       while curH2 != null 
           curH.sibling = curH2
           curH2 = curH2.sibling
   else 
       while curH1 != null 
           curH.sibling = curH1
           curH1 = curH1.sibling
   curH = H.head                     // объединение деревьев одной степени 
   while curH.sibling != null 
       if curH.degree == curH.sibling.degree
           p[curH] = curH.sibling
           tmp = curH.sibling
           curH.sibling = curH.sibling.child
           curH = tmp
           continue
       curH = curH.sibling
   return H

insert[править]

Чтобы добавить новый элемент в биномиальную кучу нужно создать биномиальную кучу [math]H'[/math] с единственным узлом, содержащим этот элемент, за время [math]O(1)[/math] и объединить ее с биномиальной кучей [math]H[/math] за [math]O(\log n)[/math], так как в данном случае куча [math]H'[/math] содержит лишь одно дерево.

extractMin[править]

Приведенная ниже процедура извлекает узел с минимальным ключом из биномиальной кучи и возвращает указатель на извлеченный узел.

Рассмотрим пошагово алгоритм:

  • Найдем биномиальное дерево с минимальным корневым значением. Предположим, что это дерево [math]B_k[/math]. Время работы этого шага алгоритма [math]\Theta(\log n)[/math].
  • Удаляем дерево [math]B_k[/math] из кучи [math]H[/math]. Иными словами, удаляем его корень из списка корней кучи. Это можно сделать за время [math]O(1)[/math].
  • Пусть [math]H'[/math] — куча детей найденного корня. При этом мы для каждого из ребенка устанавливаем указатель на предка равным [math]null[/math]. После этого сливаем кучу [math]H'[/math] c [math]H[/math] за [math]\Omega(\log n)[/math].

Процедура выполняется за время [math]\Theta(\log n)[/math], поскольку всего в списке [math]\Theta(\log n)[/math] корней биномиальных деревьев. И всего у найденного дерева [math] k [/math] порядка (с минимальным значением ключа) ровно [math] k [/math] детей, то сложность перебора этих детей будет тоже [math]\Theta(\log n)[/math]. А процесс слияния выполняется за [math]\Omega(\log n)[/math]. Таким образом, операция выполняется [math]\Theta(\log n)[/math].

Примеp извлечения минимума

Node extractMin(H : BinomialHeap): //поиск корня х с минимальным значением ключа в списке корней Н: 
    min = [math]\infty[/math]
    x = null
    xBefore = null
    curx = H.head
    curxBefore = null
    while curx != null 
        if curx.key < min       // релаксируем текущий минимум 
            min = curx.key
            x = curx 
            xBefore = curxBefore 
       curxBefore = curx
       curx = curx.sibling
   if xBefore == null           //удаление найденного корня x из списка корней деревьев кучи
       H.head = x.sibling
   else 
       xBefore.sibling = x.sibling 
   H' = null                    //построение кучи детей вершины x, при этом изменяем предка соответствующего ребенка на null:
   curx = x.child
   H'.head = x.child
   while curx != null 
       p[curx] = null           // меняем указатель на родителя узла curx 
       curx = curx.sibling      // переход к следующему ребенку 
   H = merge(H, H')             // слияние нашего дерева с деревом H' 
   return x

decreaseKey[править]

Следующая процедура уменьшает ключ элемента [math]x[/math] биномиальной кучи, присваивая ему новое значение. Вершина, ключ которой был уменьшен, «всплывает» как в обычной куче. Процедура выполняется за время [math]\Theta(\log n)[/math], поскольку глубина вершины [math]x[/math] в худшем случае есть [math]\Theta(\log n)[/math] (свойства биномиального дерева), а при выполнении каждого шага алгоритма мы поднимаемся вверх.

function decreaseKey(H : BinomialHeap, x : Node, k : int): 
    if k > key[x]                      // проверка на то, что текущий ключ x не меньше передаваемого ключа k  
        return
    key[x] = k
    y = x
    z = p[y]
    while z != null and key[y] < key[z] // поднимаем  x с новым ключом k, пока это значение меньше значения в родительской вершине 
        swap(key[y], key[z])
        y = z
        z = p[y]

Пример работы процедуры проиллюстрирован на рисунке ([math]y[/math] — уменьшаемый элемент, [math]z[/math] — его предок).

BinHeapExample3 2.png

delete[править]

Удаление ключа сводится к операциям [math]\mathrm {decreaseKey}[/math] и [math]\mathrm {extractMin}[/math]: сначала нужно уменьшить ключ до минимально возможного значения, а затем извлечь вершину с минимальным ключом. В процессе выполнения процедуры этот узел всплывает вверх, откуда и удаляется. Процедура выполняется за время [math]\Theta(\log n)[/math], поскольку каждая из операций, которые используется в реализации, работают за [math]\Theta(\log n)[/math].

 function delete(H : BinomialHeap, x : Node): 
   decreaseKey(H, x, [math]-\infty[/math]) // уменьшение ключа до минимально возможного значения 
   extractMin(H)           // удаление "всплывшего" элемента 

Персистентность[править]

Биноминальную кучу можно сделать персистентной при реализации на односвязных списках[1]. Для этого будем хранить список корней в порядке возрастания ранга, а детей будем хранить по убыванию ранга. Каждый родитель будет знать ребенка с большим рангом, который является головой списка детей, но ребенок не будет знать родителя. Односвязанные списки хороши с точки зрения функционального программирования, так как голова списка не будет достижима из потомков. Тогда при добавлениии новой версии в голову или удалении объявляя другую вершину новой головой мы не будем терять старые версии, которые останутся на месте, так как фактически односвязный список с операциями на голове это персистентный стек, который является полностью персистентной функциональной структурой. При этом каждая версия будет поддерживать возможность изменения, что является полным уровнем персистентности. Также поддерживается операция [math]\mathrm {merge}[/math] для всех версий биномиальных куч, что позволяет получать новую версию путём сливания старых. Это добавляет конфлюэнтный уровень персистентности.

См. также[править]

Примечания[править]

Источники информации[править]