Редактирование: Вычислимые числа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 26: Строка 26:
 
       '''return''' <tex>0</tex>
 
       '''return''' <tex>0</tex>
  
<tex> \Longleftarrow </tex>
+
<tex> \Longleftarrow </tex>:
  
 
: Построим функцию <tex> a(\varepsilon) </tex>
 
: Построим функцию <tex> a(\varepsilon) </tex>
Строка 46: Строка 46:
 
Число <tex> \alpha </tex> вычислимо <tex>\iff</tex> последовательность знаков представляющей его двоичной записи вычислима.
 
Число <tex> \alpha </tex> вычислимо <tex>\iff</tex> последовательность знаков представляющей его двоичной записи вычислима.
 
|proof=
 
|proof=
<tex> \Longrightarrow </tex>
+
<tex> \Longrightarrow </tex>:
  
 
: Если число <tex> \alpha </tex> {{---}} рациональное, то необходимую последовательность можно получить, воспользовавшись стандартным алгоритмом перевода числа в двоичную систему счисления. Рассмотрим случай, когда <tex> \alpha \in \mathbb R \setminus \mathbb Q </tex>.
 
: Если число <tex> \alpha </tex> {{---}} рациональное, то необходимую последовательность можно получить, воспользовавшись стандартным алгоритмом перевода числа в двоичную систему счисления. Рассмотрим случай, когда <tex> \alpha \in \mathbb R \setminus \mathbb Q </tex>.
Строка 64: Строка 64:
 
   '''return''' <tex>t</tex>
 
   '''return''' <tex>t</tex>
  
<tex> \Longleftarrow </tex>
+
<tex> \Longleftarrow </tex>:
 
: Для любого рационального <tex> \varepsilon > 0 </tex>, найдем <tex> n: 2^{-n} < \varepsilon </tex>, тогда в качестве значения функции <tex> a(\varepsilon) </tex> можно взять часть последовательности знаков двоичной записи <tex> \alpha </tex> с <tex> n </tex> знаками после запятой.
 
: Для любого рационального <tex> \varepsilon > 0 </tex>, найдем <tex> n: 2^{-n} < \varepsilon </tex>, тогда в качестве значения функции <tex> a(\varepsilon) </tex> можно взять часть последовательности знаков двоичной записи <tex> \alpha </tex> с <tex> n </tex> знаками после запятой.
 
}}
 
}}
Строка 77: Строка 77:
 
Число <tex> \alpha </tex> вычислимо <tex>\iff</tex> существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к <tex> \alpha </tex>.
 
Число <tex> \alpha </tex> вычислимо <tex>\iff</tex> существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к <tex> \alpha </tex>.
 
|proof=
 
|proof=
<tex> \Longrightarrow </tex>
+
<tex> \Longrightarrow </tex>:
  
 
: Так как <tex> \alpha </tex> вычислимо, то, согласно предыдущей теореме, вычислима и его двоичная запись. Пусть <tex> r_n </tex> {{---}} часть последовательности знаков двоичной записи <tex> \alpha </tex> с <tex> n </tex> знаками после запятой. Данная последовательность вычислима, а также вычислимо сходится к <tex> \alpha </tex>, так как <tex> N(\varepsilon) = \lceil -\log_2 \varepsilon \rceil</tex>.
 
: Так как <tex> \alpha </tex> вычислимо, то, согласно предыдущей теореме, вычислима и его двоичная запись. Пусть <tex> r_n </tex> {{---}} часть последовательности знаков двоичной записи <tex> \alpha </tex> с <tex> n </tex> знаками после запятой. Данная последовательность вычислима, а также вычислимо сходится к <tex> \alpha </tex>, так как <tex> N(\varepsilon) = \lceil -\log_2 \varepsilon \rceil</tex>.
  
<tex> \Longleftarrow </tex>
+
<tex> \Longleftarrow </tex>:
  
 
: Пусть <tex> a(\varepsilon) = r_{N(\varepsilon)} </tex>, тогда <tex> \alpha </tex> вычислимо по определению.
 
: Пусть <tex> a(\varepsilon) = r_{N(\varepsilon)} </tex>, тогда <tex> \alpha </tex> вычислимо по определению.
Строка 179: Строка 179:
 
Число <tex> \alpha </tex> перечислимо снизу <tex>\iff</tex> существует вычислимая возрастающая последовательность рациональных чисел, пределом которой является <tex> \alpha </tex>.
 
Число <tex> \alpha </tex> перечислимо снизу <tex>\iff</tex> существует вычислимая возрастающая последовательность рациональных чисел, пределом которой является <tex> \alpha </tex>.
 
|proof=
 
|proof=
<tex>\Longrightarrow</tex>
+
<tex>\Longrightarrow</tex>:
  
 
: По определению <tex> \alpha </tex>, множество <tex> A = \{ a \in \mathbb Q \mid a < \alpha \} </tex> перечислимо. Кроме того, <tex> \sup A = \alpha </tex>.
 
: По определению <tex> \alpha </tex>, множество <tex> A = \{ a \in \mathbb Q \mid a < \alpha \} </tex> перечислимо. Кроме того, <tex> \sup A = \alpha </tex>.
Строка 185: Строка 185:
 
: По определению нижней грани, <tex> \forall \varepsilon > 0\ \exists x_\varepsilon \in A: \varepsilon > \alpha - x_\varepsilon </tex>. Тогда можно взять, например, последовательность <tex> a_n = x_{\frac{1}{n}} </tex>.
 
: По определению нижней грани, <tex> \forall \varepsilon > 0\ \exists x_\varepsilon \in A: \varepsilon > \alpha - x_\varepsilon </tex>. Тогда можно взять, например, последовательность <tex> a_n = x_{\frac{1}{n}} </tex>.
  
<tex>\Longleftarrow</tex>
+
<tex>\Longleftarrow</tex>:
  
 
: Построим полуразрешитель для множества <tex> A </tex>:
 
: Построим полуразрешитель для множества <tex> A </tex>:

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: