Граница Чернова

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Граница Чернова (англ. Chernoff bound) дает оценку вероятности того, что сумма n одинаково распределенных независимых случайных величин больше (или меньше) некоторого значения.


Абсолютная оценка

Теорема (Граница Чернова (аддитивная форма)):
Пусть даны [math]X_1 X_2 \ldots X_n[/math] — одинаково распределенные независимые случайные величины, принимающие значения из множества [math]\{0, 1\}[/math],

[math]m = {E} \sum\limits_{i=1}^{n} X_i[/math],

Тогда:

[math]{P} (|\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}[/math]
Доказательство:
[math]\triangleright[/math]

Так как [math]X_1 X_2 \ldots X_n[/math] — одинаково распределенные и принимают значения из множества [math]\{0, 1\}[/math]:

[math]{P}(X_i = 1) = p[/math]

[math]{P}{(X_i = 0) = 1 - p = q}[/math]

[math]{E} X_i = p[/math]


Пусть [math]\bar{X_i} = X_i - p[/math], тогда [math]{E}\bar{X_i} = 0[/math]

Преобразуем выражение [math]{P} (\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta)[/math]. ([math]t[/math] — любое положительное число):

[math]{P}(\dfrac{1}{n}\sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \geqslant \delta) = {P} (\dfrac{1}{n}\sum\limits_{i=1}^{n}\bar{X_i} \geqslant \delta) = {P}(e^{t\sum\limits_{i=1}^{n} \bar{X_i}} \geqslant e^{t \delta n})[/math]

Используем неравенство Маркова для оценки полученного выражения:

[math]{P}(e^{ t\sum\limits_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}})}{e^{t \delta n}}[/math]

Матожидание можно преобразовать:

[math]{E} (e^{ t\sum\limits_{i=1}^{n}\bar{X_i}}) = \prod\limits_{i = 1}^{n}{E}(e^{t \bar{X_i}})[/math]

Оценим [math]{E}(e^{t \bar{X_i}})[/math] с учётом того, что [math]p \in [0, 1][/math]

[math]{E}(e^{t \bar{X_i}}) = p e^{tq} + qe^{-pt} \leqslant e ^ {\frac{t^2}{8}}[/math]

[math]{P}(e^{ t\sum\limits_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant \dfrac{e^{n\frac{t^2}{8}}}{e^{t \delta n}}[/math]

При [math]t = 4\delta[/math]: [math]\mathbb {P}(e^{ t\sum\limits_{i=1}^{n}\bar{X_i}} \geqslant e^{t \delta n}) \leqslant e^{-2 \delta^2 n}[/math]

Аналогично доказывается, что: [math]{P} (\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m \leqslant -\delta) \leqslant e^{-2 \delta^2 n}[/math]

Таким образом: [math]{P} (|\dfrac{1}{n} \sum\limits_{i=1}^{n} X_i - \dfrac{1}{n} m| \geqslant \delta) \leqslant 2e^{-2 \delta ^2 n}[/math]
[math]\triangleleft[/math]

Относительная оценка

Определение:
Производящая функция моментов (англ. moment-generating function) случайной величины [math]X[/math] — функция из [math]\mathbb R[/math] в [math]\mathbb R[/math], определяемая как:
[math]M_x(t) =[/math] [math]{E}(e^{tX})[/math].


Определение:
Распишем производящую функцию моментов по формуле Тейлора:

[math]M_x(t) =[/math] [math]{E}(e^{tX}) =[/math] [math]{E}(1 + tX + \dfrac{1}{2}t^2 X^2 + \cdots + \dfrac{1}{n!}t^n X^n + \cdots =[/math] [math]\sum\limits_{1}^{\infty} \dfrac{1}{i!} {E}(X^i)[/math]

Величина [math]{E}(X^i)[/math] называется моментом (англ. moment) случайной величины [math]X[/math].


Лемма:
[math]X[/math], [math]Y[/math] — независимые случайные величины, тогда:
[math]{E}(e^{tX}e^{tY}) = {E}(e^{tX}){E}(e^{tY})[/math]
Лемма:
[math]X[/math] — независимая случайная величина принимающая значения из множества [math]\{0, 1\}[/math], [math]{P}(X = 1) = p[/math], [math]{P}{(X = 0) = 1 - p}[/math], тогда для любого [math]t \in \mathbb{R}[/math]:
[math]{E}e^{t X} \leqslant e^{p(e^t - 1)}[/math]
Теорема (Граница Чернова (мультипликативная форма)):
Пусть даны [math]X_1 X_2 \ldots X_n[/math] — независимые случайные величины, принимающие значения из множества [math]\{0, 1\}[/math], [math]{P}(X_i = 1) = p[/math], [math]{P}{(X_i = 0) = 1 - p}[/math]

[math]X = \sum_{i=1}^{n} X_i[/math]

[math]m = {E}X = np[/math]

Тогда:

[math]{P} (X \geqslant (1 + \delta)m) \leqslant e^{- \frac{\delta^2}{2 + \delta}m }[/math], для [math]\delta \gt 0[/math]

[math]{P} (X \leqslant (1 - \delta)m) \leqslant e^{- \frac{\delta^2}{2}m }[/math], для [math]0 \lt \delta \lt 1[/math]
Доказательство:
[math]\triangleright[/math]

По неравенству Маркова: [math]{P}(x \geqslant a) =[/math] [math]{P}(e^x \geqslant e^a) \leqslant [/math] [math]\dfrac{{E}(e^tX)}{e^a}[/math]

Воспользуемся первой и второй леммами:

[math]\dfrac{{E}(e^tX)}{e^a} \leqslant[/math] [math]\dfrac{\prod\limits{i = 1}{n}e^{p(e^t - 1)}}{e^{a}} =[/math] [math]\dfrac{e^{(e^t - 1)\sum\limits{i = 1}{n}p}}{e^{a}}[/math]

Заметим, что [math]\sum\limits{i = 1}{n} p = m[/math], кроме того [math]a = (1 + \delta)m[/math] (по замене).

[math]\dfrac{e^{(e^t - 1)\sum\limits{i = 1}{n}}}{e^{a}} = [/math] [math]e^{m(e^t - 1 - t - t\delta)}[/math]

Функция [math]e^{m(e^t - 1 - t - t\delta)}[/math] принимает своё минимальное значение в точке [math]t = \ln (1 + \delta)[/math]

Воспользуемся неравенством ([math]x \gt 0[/math]): [math]\ln(1 + x) \geqslant \dfrac{x}{1 + x^2}[/math], для оценки выражения [math]m(\delta - (1 + \delta)\ln(1 + \delta))[/math]:

[math]m(\delta - (1 + \delta)\ln(1 + \delta)) \leqslant[/math] [math]- \dfrac{\delta^2}{2 + \delta}m[/math]

Отсюда:

[math]{P} (X \geqslant (1 + \delta)m) \leqslant e^{- \frac{\delta^2}{2 + \delta}m }[/math], для [math]\delta \gt 0[/math]

Второе неравенство доказывается аналогично.
[math]\triangleleft[/math]

См. также

Источники информации