Декартово дерево по неявному ключу — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Split)
(Поддержание корректности значений C)
Строка 38: Строка 38:
 
===Поддержание корректности значений C===
 
===Поддержание корректности значений C===
 
Единственное действие, обеспечивающее корректность этих значений заключается в том, что после любого действия с детьми вершины нужно записать в ее поле <tex>C</tex> сумму этих значений в ее новых детях, увеличенную на единицу.
 
Единственное действие, обеспечивающее корректность этих значений заключается в том, что после любого действия с детьми вершины нужно записать в ее поле <tex>C</tex> сумму этих значений в ее новых детях, увеличенную на единицу.
 +
 +
Псевдокод:
 +
<pre>
 +
update(Treap t)
 +
  t.size = t.left.size + t.right.size
 +
</pre>
  
 
==Применение описанного дерева==
 
==Применение описанного дерева==

Версия 19:13, 30 мая 2015

Основная идея

Возьмем структуру данных вектор. В её стандартной реализации мы умеем добавлять элемент в конец вектора, узнавать значение элемента, стоящего на определенной позиции, изменять элемент по номеру и удалять последний элемент. Предположим, что нам необходима структура данных с вышеуказанными свойствами, а также с операциями: добавить элемент в любое место (с соответствующим изменением нумерации элементов) и удалить любой элемент (также с соответствующим изменением нумерации). Такую структуру можно реализовать на базе декартового дерева, результат часто называют декартово дерево по неявному ключу.

Ключ X

Как известно, декартово дерево — это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. При реализации же декартова дерева по неявному ключу модифицируем эту структуру. А именно, оставим в нем только приоритет [math]Y[/math], а вместо ключа [math]X[/math] будем использовать следующую величину: количество элементов в нашей структуре, находящихся левее нашего элемента. Иначе говоря, будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу.

Заметим, что при этом сохранится структура двоичного дерева поиска по этому ключу (то есть модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется [math]O(n)[/math] времени, где [math]n[/math] — количество элементов в дереве.

Вспомогательная величина С

Решается эта проблема довольно просто. Основная идея заключается в том, что такой ключ [math]X[/math] сам по себе нигде не хранится. Вместо него будем хранить вспомогательную величину [math]C[/math]: количество вершин в поддереве нашей вершины (в поддерево включается и сама вершина). Обратим внимание, что все операции с обычным декартовым деревом делались сверху. Также заметим, что если по пути до некой вершины просуммировать все такие величины в левых поддеревьях, в которые мы не пошли, увеличенные на единицу, то придя в саму вершину и добавив к этой величине количество элементов в её левом поддереве, мы получим как раз ее ключ [math]X[/math].

Пример описанного дерева с демонстрацией определения ключа [math]X[/math]

Операции, поддерживающие структуру декартова дерева

Структура обычного декартова дерева поддерживается с помощью двух операций: [math]\mathrm{split}[/math] — разбиение одного декартова дерева на два таких, что в одном ключ [math]X[/math] меньше, чем заданное значение, а в другом — больше, и [math]\mathrm{merge}[/math] — слияние двух деревьев, в одном из которых все ключи [math]X[/math] меньше, чем во втором. С учетом отличий декартова дерева по неявному ключу от обычного, операции теперь будут описываться так: [math]\mathrm{split(root, t)}[/math] — разбиение дерева на два так, что в левом окажется ровно [math]t[/math] вершин, и [math]\mathrm{merge(root1, root)}[/math] — слияние двух любых деревьев, соответственно.

Split

Пусть процедура [math]\mathrm{split}[/math] запущена в корне дерева с требованием отрезать от дерева [math]k[/math] вершин. Также известно, что в левом поддереве вершины находится [math]l[/math] вершин, а в правом [math]r[/math]. Рассмотрим все возможные случаи:

  • [math]l \gt = k[/math]. В этом случае нужно рекурсивно запустить процедуру [math]\mathrm{split}[/math] от левого сына с тем же параметром [math]k[/math]. При этом новым левым сыном корня станет правая часть ответа рекурсивной процедуры, а правой частью ответа станет корень.
  • [math]l \lt k[/math] Случай симметричен предыдущему. Рекурсивно запустим процедуру [math]\mathrm{split}[/math] от правого сына с параметром [math]k - l - 1[/math]. При этом новым правым сыном корня станет левая часть ответа рекурсивной процедуры, а левой частью ответа станет корень.

Псевдокод:

Split(Treap t, int k, Treap &t1, Treap &t2)
  int l = t.left.size;
  if l >= k
    split(t.left, k, t1, t.left)
    update(v)
    r = v;
  else
    split(t.right, k - l - 1, t.right, t2)
    update(v)
    l = v

Merge

Посмотрим любую из реализаций процедуры [math]\mathrm{merge}[/math]. Заметим, что в ней программа ни разу не обращается к ключу [math]X[/math]. Поэтому реализация процедуры [math]\mathrm{merge}[/math] для декартова дерева по неявному ключу вообще не будет отличаться от реализации той же процедуры в обычном декартовом дереве.

Поддержание корректности значений C

Единственное действие, обеспечивающее корректность этих значений заключается в том, что после любого действия с детьми вершины нужно записать в ее поле [math]C[/math] сумму этих значений в ее новых детях, увеличенную на единицу.

Псевдокод:

update(Treap t)
  t.size = t.left.size + t.right.size

Применение описанного дерева

Таким образом, описана структура, от которой можно отрезать слева часть произвольной длины и слить две любые части в одну в нужном порядке. Теперь мы имеем возможность:

  • вставить элемент в любое место (отрежем нужное количество элементов слева, сольем левое дерево с деревом из одного добавленного элемента и результат — с правым деревом);
  • переставить любой кусок массива куда угодно (сделаем нужные разрезы и слияния в правильном порядке);
  • совершать групповые операции с элементами. Вспомним реализацию таких операций в дереве отрезков и поймем, что ничего не помешает нам сделать то же самое с описанным деревом. В групповые операции включается, естественно, и взятие функции от отрезка.
  • сделав на одном исходном массиве два дерева из элементов разной четности, можно решить задачу про смену мест четных и нечетных на отрезке.
  • с помощью декартова дерева по неявному ключу можно эффективно реализовать такую структуру данных как Rope

Ссылки