Редактирование: Доказательство теоремы Эдмондса-Лоулера

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 16: Строка 16:
 
|about=1
 
|about=1
 
|statement = <tex>A</tex> — независимое множество в матроиде <tex>M=\langle X, I\rangle</tex>. <tex>B \subset X</tex>, <tex>|B|=|A|</tex> и в подграфе графа замен <tex>G_M</tex>, индуцированном <tex>A \oplus B</tex>, существует единственное полное паросочетание. Тогда <tex>B</tex> — независимое в матроиде <tex>M</tex>.
 
|statement = <tex>A</tex> — независимое множество в матроиде <tex>M=\langle X, I\rangle</tex>. <tex>B \subset X</tex>, <tex>|B|=|A|</tex> и в подграфе графа замен <tex>G_M</tex>, индуцированном <tex>A \oplus B</tex>, существует единственное полное паросочетание. Тогда <tex>B</tex> — независимое в матроиде <tex>M</tex>.
|proof=  
+
|proof= Обозначим граф (неориентированный), индуцированный <tex>A \oplus B</tex> за <tex>G</tex>. Обозначим вершины из <tex>A \setminus B</tex> за <tex>y_i</tex>, из <tex>B \setminus A</tex> за <tex>z_i</tex>. Перенумеруем вершины так, чтобы рёбра из паросочетания соединяли вершины с одинаковыми индексами, и <tex>\forall i,j: i < j</tex> не существовало бы ребра между вершинами <tex>y_i</tex> и <tex>z_j</tex> (возможность первого следует из существования полного паросочетания, второго — из его единственности).  
[[Файл:El_lemma2.png|thumb|right|Граф <tex>G</tex>]]
 
Обозначим граф (неориентированный), индуцированный <tex>A \oplus B</tex> за <tex>G</tex>. Обозначим вершины из <tex>A \setminus B</tex> за <tex>y_i</tex>, из <tex>B \setminus A</tex> за <tex>z_i</tex>. Перенумеруем вершины так, чтобы рёбра из паросочетания соединяли вершины с одинаковыми индексами, и <tex>\forall i,j: i < j</tex> не существовало бы ребра между вершинами <tex>y_i</tex> и <tex>z_j</tex> (возможность первого следует из существования полного паросочетания, второго — из его единственности).  
 
  
 
Пусть <tex>B</tex> — не независимо, значит, <tex>\exists</tex> цикл <tex>C \subset B</tex>. Обозначим <tex>i = \min k: z_k \in C</tex>.  
 
Пусть <tex>B</tex> — не независимо, значит, <tex>\exists</tex> цикл <tex>C \subset B</tex>. Обозначим <tex>i = \min k: z_k \in C</tex>.  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: