Изменения

Перейти к: навигация, поиск

Задача об ожерельях

9494 байта добавлено, 19:42, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{ОпределениеЗадача
|definition=
Требуется посчитать количество ожерелий из <tex>n</tex> бусинок, каждая из которых может быть покрашена в один из <tex> k </tex> цветов. При сравнении двух ожерелий их можно поворачивать, но не переворачивать (т.е. разрешается сделать циклический сдвиг).}}
Решение этой задачи опирается на [http://neerc.ifmo.ru/wiki/index.php?title=Лемма_Бёрнсайда_и_Теорема_Пойа Лемму [Лемма Бёрнсайда и Теорему Теорема Пойа|лемму Бёрнсайда и теорему Пойа]].
 
{{Определение
|definition=
'''Инвариантная перестановка''' {{---}} такая перестановка, которая по условию задачи не меняет сам объект, а только его представление.
}}
Примером инвариантной перестановки в нашем случае является циклический сдвиг.
 
{{Определение
|definition=
'''Неподвижной точкой''' <tex>f</tex> для перестановки называется такой элемент, который инвариантен относительно этой перестановки.
}}
== Алгоритм решения задачи про ожерелья ==
<tex>|C | =</tex> <tex dpi = "180"> \fracdfrac{1} {|G|}</tex><tex>\sum\limits_{l \in G} k^{P(l)}</tex>
По условию, перестановкой инвариантной данной будет любая перестановка, полученная из данной циклическим сдвигом.
Очевидно, что для каждой перестановки длины <tex>n</tex> существует ровно <tex>n - 1</tex> инвариантная перестановка, то есть всего инвариантных перестановок в каждом классе <tex>n</tex>, теперь найдем <tex>P(i)</tex>. Заметим, что в <tex>i</tex>-ой перестановке на <tex>l</tex>-ой позиции стоит элемент <tex>(i + l)\bmod n</tex>. Также, заметим, что элемент <tex>a</tex> переходит в элемент <tex>a + in</tex>, где <tex>i = 1, 2, \ldots k</tex>. Из этого следует, что длина цикла для <tex>i</tex>-ой перестановки равна <tex> \dfrac{\mathrm{lcm}(n, i)}{i} = \dfrac{n}{\mathrm{gcd}(i,n)}</tex>, где <tex>\mathrm{gcd}(i, n)</tex> {{---}} [[Наибольший общий делитель|НОД<tex>(i, n)</tex>]], <tex>\mathrm{lcm}(i, n)</tex> {{---}} [[Наименьшее общее кратное|НОК<tex>(i, n)</tex>]]. Откуда следует что:
Очевидно, что для каждой перестановки длины <tex>n|C| =</tex> существует ровно <tex>\dfrac{1} {n}</tex> циклических сдвигов, теперь найдем <tex>P(i)</tex>. Заметим, что в <tex>i</tex>-ой перестановке на <tex>l</tex>-ой позиции стоит элемент <tex>(i + l)\mod n</tex>. Также, заметим, что элемент <tex>a</tex> переходит в элемент <tex>a + in</tex>, где <tex>i sum\in [1; k]</tex>. Из этого следует, что длина цикла для <tex>limits_{i</tex>-ой перестановки равна <tex>lcm(n, i)/i = 1}^{n/} k^{\mathrm{gcd}(i,n)}</tex>.Откуда следует что:
<tex>C =</tex> <tex dpi = "180"> \frac{1} {n}</tex><tex>\sum\limits_{i = 1}^{n} k^{gcd(i,n)}</tex>.
где <tex>|C|</tex> {{---}} кол-во различных ожерелий,которые можно составить из <tex>n</tex> бусинок <tex>k</tex> различных цветов.
где <tex>C</tex> - кол-во различных ожерелий,которые можно составить из <tex>n</tex> бусинок <tex>k</tex> различных цветов.
Если раскраски ожерелья одинаковые, то они принадлежат одной [[Орбита|орбите]], т.е. одна получается из другой некоторым преобразованием симметрии. Неподвижные точки поворота есть только у тождественного поворота и их <tex>n</tex> штук. Тогда, по [[Лемма Бёрнсайда и Теорема Пойа|лемме Бёрнсайда]], число орбит равняется <tex>\dfrac{n}{p}=\operatorname{gcd}(n,i)</tex>, где <tex>p</tex> минимальное число такое, что <tex>ip</tex> делится на <tex>n</tex>, и число их раскрасок <tex>N_i=k^{\operatorname{gcd}(n,i)}</tex>. Сумма же инвариантных раскрасок для всех поворотов: <tex>S=\sum\limits_{i=1}^{n}N_i=\sum\limits_{i=1}^{n}k^{\operatorname{gcd}(n,i)}</tex>. В последней сумме <tex>\varphi(n)</tex> слагаемых <tex>(\varphi(n)</tex> {{---}} [[Функция Эйлера|функция Эйлера]]<tex>)</tex>, для которых <tex>\operatorname{gcd}(n,i)=1</tex>. Если же <tex>\operatorname{gcd}(n,i)=q</tex>, то <tex>\operatorname{gcd}\left(\dfrac{n}{q},\dfrac{i}{q}\right)=1</tex>. Чтобы определить количество таких <tex>i</tex>, меньших <tex>n</tex>, нужно перебрать числа вида <tex>i=lq,\,0\leqslant l\leqslant \dfrac{n}{q}</tex> и проверять их на условие <tex>1=\operatorname{gcd}\left(\dfrac{n}{q},\dfrac{i}{q}\right)=\operatorname{gcd}\left(\dfrac{n}{q},l\right)</tex>. Таких чисел, очевидно, <tex>\varphi\left(\dfrac{n}{q}\right)</tex> (по определению <tex>\varphi(n)</tex>). Поэтому сумму можно заменить: <tex>S=\sum\limits_{i=1}^{n}k^{\operatorname{gcd}(n,i)}=\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>.
 
 
Тогда <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>.
 
== Алгоритм решения задачи про ожерелья с отражениями==
 
[[Файл:axis_of_braclets.png|300px|thumb|right|Слева пример оси для нечётного случая. Справа для чётного.]]
Пусть теперь ожерелья считаются одинаковыми, если они не только переходят друг в друга поворотом, но и отражением относительно некоторой оси (ось может проходить через две противоположные бусинки или через две противоположные пустоты в чётном случае и через бусинку и пустоту напротив неё в нечётном случае). Такие ожерелья называются bracelets <ref>[https://en.wikipedia.org/wiki/Necklace_(combinatorics) Necklace (combinatorics)]</ref>.
Будем пользоваться [[Лемма Бёрнсайда и Теорема Пойа|леммой Бёрнсайда]].
Разберём два случая.
 
Для начала покажем, что в качестве операций требуется рассматривать только повороты и отражения.
* Поворот и отражение {{---}} отражение.
Занумеруем наши бусинки по часовой стрелке. Поворот и отражение не меняют порядка (в каком-то направлении бусинки занумерованы по порядку). Нетрудно понять, что отражение меняет направление обхода наших бусинок и не меняет порядка. Если мы сначала сделаем поворот, а потом отразим относительно какой-нибудь оси, то мы то самое же можем получить и обыкновенным отражением относительно какой-то оси. Такая ось найдётся, потому что всегда можно выбрать ось, что поставит первую бусинку на своё изначальное место, поменяв направление обхода (если перебирать все оси подряд, начиная с оси, проходящей через нужную нам бусинку, то изначально она останется на своём месте, потом сместится на одно место, потом на два и.т.д.). Поэтому поворот и отражение не добавляет нам новой операции.
 
* Отражение и поворот {{---}} отражение.
Аналогичные рассуждения.
 
* Отражение и отражение {{---}} поворот.
Тут мы дважды меняем направление обхода, но не меняем порядка. Поэтому данная операция заменяется обычным поворотом.
 
Пусть число бусинок нечётное, тогда мы имеем <tex>n</tex> осей, проходящих через каждую бусинку. Рассмотрим одну ось. Возьмём половину бусинок с одной стороны от оси и ту бусинку, через которую проходит данная ось. Мы можем окрасить их в произвольные цвета, а остальная половина по ним однозначно восстановится. Таким образом количество неподвижных точек для одной оси будет <tex>k^{\frac{n + 1}{2}}</tex>.
Операций в группе будет в два раза больше, чем было: <tex>2n</tex> (<tex>n</tex> сдвигов и <tex>n</tex> отражений).
 
По Лемме Бёрнсайда:
<tex> |B| = </tex> <tex>\dfrac{1} {|G|}</tex><tex>\sum\limits_{k \in G}I(k)</tex>
 
<tex> |G| = 2n</tex>. Первые <tex>n</tex> операций {{---}} повороты, и сумма количества их неподвижных точек, делённая на <tex>2n</tex>, принимает значение <tex>\dfrac{|C|} {2}</tex>, где <tex>|C|</tex> - количество ожерелий из <tex>n</tex> бусинок <tex>k</tex> различных цветов без отражений (задача выше) т.к. деление в задаче без отражений происходило на <tex>n</tex>, а здесь на <tex>2n</tex>. Следующие <tex>n</tex> операций {{---}} отражения. У каждой такой операции <tex>k^{\frac{n + 1}{2}}</tex> неподвижных точек. Поэтому сумма получается <tex>k^{\frac{n + 1}{2}}n</tex>.
 
<tex>|B| = \dfrac{|C|}{2} + \dfrac{1}{2n}k^{\dfrac{n + 1}{2}}n = \dfrac{|C|}{2} + \dfrac{1}{2}k^{\dfrac{n + 1}{2}} </tex><tex> = \dfrac{1} {2n}\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q + \dfrac{1}{2}k^{\dfrac{n + 1}{2}} </tex>
 
 
Разберём теперь чётный случай.
Тут мы имеем <tex>\frac{n}{2}</tex> осей, проходящих через пустоты между бусинками (ось можно провести через пустоту после каждой бусинки, но половина из них будет повторяться). В таких вот случаях можно выбрать по <tex>\frac{n}{2}</tex> бусинок и дать им произвольные цвета. Остальная половина восстановится по ним. Таким образом для данных осей количество неподвижных точек будет <tex>k^{\frac{n}{2}}</tex>.
Ещё у нас есть <tex>\frac{n}{2}</tex> осей, проходящих через бусинки. В данных случаях мы можем выбрать по <tex>\frac{n}{2} + 1</tex> бусинок (бусинки на оси и все по одну какую-то сторону от неё). То есть будет <tex>k^{\frac{n}{2} + 1}</tex> неподвижных точек. Операций также <tex>2n</tex>.
 
По Лемме Бёрнсайда:
 
<tex>|B| = \dfrac{|C|}{2} + \dfrac{1}{2n}\left(\dfrac{n}{2}k^{\frac{n}{2}} + \dfrac{n}{2}k^{\frac{n}{2} + 1}\right)</tex> <tex>= \dfrac{|C|}{2} + \dfrac{1}{4}k^{\frac{n}{2}}(k + 1) = \dfrac{1} {2n}\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q + \dfrac{1}{4}k^{\frac{n}{2}}(k+1)</tex>
== См. также ==
* [http[Лемма Бёрнсайда и Теорема Пойа]]* [[Функция Эйлера]] == Примечания ==<references/> == Источники информации ==* [https://neercru.ifmowikipedia.ruorg/wiki/index%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A0%D0%B5%D0%B4%D1%84%D0%B8%D0%BB%D0%B4%D0%B0_%E2%80%94_%D0%9F%D0%BE%D0%B9%D0%B0#.D0.97.D0.B0.D0.B4.D0.B0.D1.87.D0.B0_.D0.BE_.D0.BA.D0.BE.D0.BB.D0.B8.D1.87.D0.B5.D1.81.php?title=Лемма_Бёрнсайда_и_Теорема_Пойа Лемма Бёрнсайда и D1.82.D0.B2.D0.B5_.D0.BE.D0.B6.D0.B5.D1.80.D0.B5.D0.BB.D0.B8.D0.B9 Википедия {{---}} Теорема Редфилда — Пойа, Задача о количестве ожерелий]* [http://e-maxx.ru/algo/necklace_colouring MAXimal::algo::Ожерелья]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Комбинаторика]]
[[Категория: Теория групп]]
1632
правки

Навигация