Редактирование: Карта глубины

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 96: Строка 96:
 
[[Файл:Dnn.jpeg|thumb|400px| Рисунок 5. Aрхитектура сети на базе DispNet  <ref name="cvrp">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" Figure 4</ref>]]
 
[[Файл:Dnn.jpeg|thumb|400px| Рисунок 5. Aрхитектура сети на базе DispNet  <ref name="cvrp">Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe "Unsupervised Learning of Depth and Ego-Motion from Video" Figure 4</ref>]]
  
Будем использовать сверточные нейронные сети c глубиной одного вида и многовидовой камерой из неупорядоченного видеоряда. Метод базируется на синтезе видов. Сеть загружает фото объекта в качестве данных ввода и выводит глубину пикселя. Вид объекта может быть синтезирован исходя из глубины на каждого пикселя снимка позиционирования и четкости ближнего вида. Синтез может быть  дифференцирован с CNN по геометрии и модулям позиционирования.
+
Будем использовать сверточные нейронные сети c глубиной одного вида и многовидовой камерой из неупорядоченного видеоряда. Метод базируется на синтезе видов. Сеть загружает фото объекта в качестве данных ввода и выводит карту глубины на каждый пиксель. Вид объекта может быть синтезирован исходя из глубины на каждого пикселя снимка позиционирования и четкости ближнего вида. Синтез может быть  дифференцирован с CNN по геометрии и модулям позиционирования.
 
Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networks
 
Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networks
 
for Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.
 
for Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: