Редактирование: Карта глубины

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 88: Строка 88:
  
 
* '''Неплоская карта глубины''': ищем одно-канальную (или неплоскую) карту глубины, то есть карту глубины, где каждый пиксель, либо на глубине 0, либо на глубине 1.
 
* '''Неплоская карта глубины''': ищем одно-канальную (или неплоскую) карту глубины, то есть карту глубины, где каждый пиксель, либо на глубине 0, либо на глубине 1.
Авторы обучали и тестировали данные на  NYUv2<ref>Датасет NYUv2[https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html]</ref>.
+
Авторы обучали и тестировали данные на  NYUv2<ref>https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html</ref>.
  
 
=== Обучение без учителя поиска карты глубины из видео (2017) ===
 
=== Обучение без учителя поиска карты глубины из видео (2017) ===
Строка 99: Строка 99:
 
Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networks
 
Авторы взяли на вооружение архитектуру DispNet<ref name="dispNet"> Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer "A Large Dataset to Train Convolutional Networks
 
for Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.
 
for Disparity, Optical Flow, and Scene Flow Estimation" [https://arxiv.org/pdf/1512.02134.pdf]</ref>, которая сконструирована в виде энкодера и декодера с пропущенными соединениями и многомасштабными блоками предсказания. Функция активации ReLU отслеживает все сверточные слои кроме предсказанных.
Вид объекта со всех источников формирует входные данные в сеть позиционной оценки. На выходе получается относительная позиция между видом объекта и видом каждого источника. Сеть состоит из двух 7 шаговых сверток за которым следует свертка 1 х 1. За исключением последнего слоя свертки, где применяется нелинейная активация, все другие отслеживаются функцией активации ReLU. Сеть объяснимых предсказаний дает доступ к первым пяти закодированным слоям сети позиционирования. За ней следуют 5 слоев обратной свертки с многомасштабными блоками предсказаний. Кроме слоев предсказаний все уровни свертки и обратной свертки отслеживаются ReLU. Авторы проверяли данную методику на KITTY<ref> Датасет kitty[http://www.cvlibs.net/datasets/kitti/]</ref>.
+
Вид объекта со всех источников формирует входные данные в сеть позиционной оценки. На выходе получается относительная позиция между видом объекта и видом каждого источника. Сеть состоит из двух 7 шаговых сверток за которым следует свертка 1 х 1. За исключением последнего слоя свертки, где применяется нелинейная активация, все другие отслеживаются функцией активации ReLU. Сеть объяснимых предсказаний дает доступ к первым пяти закодированным слоям сети позиционирования. За ней следуют 5 слоев обратной свертки с многомасштабными блоками предсказаний. Кроме слоев предсказаний все уровни свертки и обратной свертки отслеживаются ReLU. Авторы проверяли данную методику на KITTY<ref>http://www.cvlibs.net/datasets/kitti/</ref>.
  
 
=== Неконтролируемая оценка глубины монокуляра с консистенцией слева направо (2017) ===
 
=== Неконтролируемая оценка глубины монокуляра с консистенцией слева направо (2017) ===
Строка 108: Строка 108:
 
Сеть оценивает глубину, выводя смещения, которые искажают левое изображение, чтобы соответствовать правому. Левое входное изображение используется для вывода смещений слева направо и справа налево. Сеть генерирует предсказанное изображение с обратным отображением с помощью билинейного сэмплера. Это приводит к полностью дифференциальной модели формирования изображения.
 
Сеть оценивает глубину, выводя смещения, которые искажают левое изображение, чтобы соответствовать правому. Левое входное изображение используется для вывода смещений слева направо и справа налево. Сеть генерирует предсказанное изображение с обратным отображением с помощью билинейного сэмплера. Это приводит к полностью дифференциальной модели формирования изображения.
 
Сверточная архитектура вдохновлена так же DispNet'ом. Она состоит из двух частей—кодера и декодера. Декодер использует пропуск соединений из блоков активации кодера, чтобы распознавать детали с высоким разрешением. Сеть предсказывает две карты смещений — слева направо и справа налево.
 
Сверточная архитектура вдохновлена так же DispNet'ом. Она состоит из двух частей—кодера и декодера. Декодер использует пропуск соединений из блоков активации кодера, чтобы распознавать детали с высоким разрешением. Сеть предсказывает две карты смещений — слева направо и справа налево.
В процессе обучения сеть генерирует изображение путем выборки пикселей из противоположного стереоизображения. Модель формирования изображения использует сэмплер изображений из пространственной трансформаторной сети (STN) для выборки входного изображения с помощью карты смещений. Авторы обучали и тестировали данные на KITTY.
+
В процессе обучения сеть генерирует изображение путем выборки пикселей из противоположного стереоизображения. Модель формирования изображения использует сэмплер изображений из пространственной трансформаторной сети (STN) для выборки входного изображения с помощью карты смещений. Авторы обучали и тестировали данные на KITTY<ref>http://www.cvlibs.net/datasets/kitti/</ref>.
  
 
=== Прогнозирование глубины без датчиков: использование структуры для обучения без учителя по монокулярным видео (2019) ===
 
=== Прогнозирование глубины без датчиков: использование структуры для обучения без учителя по монокулярным видео (2019) ===

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: