Редактирование: Классические теоремы теории измеримых функций

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 53: Строка 53:
 
Рассмотрим теперь выражение <tex>f_{n_1}(x) + \sum\limits_{j = 1}^\infty(f_{n_{j + 1}}(x) - f_{n_j}(x))</tex>:
 
Рассмотрим теперь выражение <tex>f_{n_1}(x) + \sum\limits_{j = 1}^\infty(f_{n_{j + 1}}(x) - f_{n_j}(x))</tex>:
  
Для заданного <tex>x</tex> начиная с <tex>j = k_x</tex>, <tex>|f_{n_{j + 1}}(x) - f_{n_j}(x) | </tex> начнут мажорироваться сходящимся рядом <tex>\varepsilon_k</tex>. Тогда этот ряд сходится. Значит, <tex>\forall x\in A</tex> функциональная последовательность сходится.
+
Для заданного <tex>x</tex> начиная с <tex>j = k</tex>, <tex>|f_{n_{j + 1}}(x) - f_{n_j}(x) | </tex> начнут мажорироваться сходящимся рядом <tex>\varepsilon_k</tex>. Тогда этот ряд сходится. Значит, <tex>\forall x\in A</tex> функциональная последовательность сходится.
 
}}
 
}}
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: