Критерий Тарьяна минимальности остовного дерева — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Уникальность остовного дерева)
(Критерий Тарьяна)
Строка 6: Строка 6:
 
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цикле, который образуется при его добавлении в дерево.
 
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цикле, который образуется при его добавлении в дерево.
 
|proof=
 
|proof=
Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально:
+
Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально.
если существует ребро, не максимальное на образовавшемся цикле, то мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное.
+
Если существует ребро, не максимальное на образовавшемся цикле, то мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное.
  
 
Теперь докажем, что дерево <tex>K</tex>, удовлетворяющее условию, минимально:
 
Теперь докажем, что дерево <tex>K</tex>, удовлетворяющее условию, минимально:
Строка 26: Строка 26:
  
 
}}
 
}}
 +
 
== Уникальность остовного дерева ==
 
== Уникальность остовного дерева ==
 
{{Задача
 
{{Задача

Версия 20:07, 24 июня 2017

Критерий Тарьяна

Теорема (критерий Тарьяна минимальности остовного дерева):
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цикле, который образуется при его добавлении в дерево.
Доказательство:
[math]\triangleright[/math]

Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально. Если существует ребро, не максимальное на образовавшемся цикле, то мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное.

Теперь докажем, что дерево [math]K[/math], удовлетворяющее условию, минимально:

Утверждение:
Для любого разреза [math]\langle S, T \rangle[/math], в котором ребро [math]uv[/math] — единственное, пересекающее его в [math]K[/math], вес этого ребра минимален среди всех ребер [math]G[/math], пересекающих этот разрез.
[math]\triangleright[/math]

Рассмотрим ребро [math]ab \notin K[/math], пересекающее [math]\langle S, T \rangle [/math] и путь между вершинами [math]a[/math] и [math]b[/math] по дереву [math]K[/math]. По условию теоремы, вес [math]ab[/math] не меньше веса любого ребра на этом пути. При этом [math]ab[/math] пересекает [math]\langle S, T \rangle[/math], поэтому на этом пути найдется ребро, пересекающее этот разрез. Но единственное такое ребро в остовном дереве — это [math]uv[/math].

Следовательно, [math]w(uv) \le w(ab)[/math].
[math]\triangleleft[/math]

Для доказательства минимальности [math]K[/math] построим минимальное остовное дерево графа [math]G[/math] используя алгоритм Краскала, который представляет собой применение леммы о безопасном ребре некоторое число раз. На каждом шаге к строящемуся остову будет добавляться ребро минимального веса, пересекающего некоторый разрез, а этот вес, как было показано в утверждении выше, равен весу ребра из [math]K[/math], пересекающего этот разрез.

Поэтому вес получившегося минимального остова [math]G[/math] будет равен весу [math]K[/math], что и требовалось.
[math]\triangleleft[/math]

Уникальность остовного дерева

Задача:
Поиск минимального остовного дерева и проверка его на уникальность.

Алгоритм решения

Построим минимальное остовное дерево используя алгоритм Краскала. Рассмотрим рёбра вне остова в любом порядке. Очередное обозначим [math]e = (u, v)[/math]. Рассмотрим максимальное ребро на пути [math]u[/math] и [math]v[/math] внутри остова:

  • Если его вес совпадает с весом ребра, то при добавлении ребра в остов, мы получим остов с циклом на котором несколько рёбер имеют одинаковый вес, значит мы можем удалить любое из них и остовное дерево будет всё ещё минимальным, это нарушает уникальность дерева. На этом алгоритм завершается и по критерию Тарьяна мы можем сказать, что в графе можно построить несколько остовных деревьев.
  • Если его вес больше ребра, то заменив ребро мы получим остов с большим весом, этот случай не влияет на уникальность.
  • Его вес не может быть меньше ребра из остова, иначе мы смогли бы построить минимальное остовное дерево с меньшим весом.

После рассмотрения всех рёбер, если мы не нашли ребро вне остова, при добавлении которого создаётся цикл с максимальным ребром таким же как и на пути [math]u[/math] и [math]v[/math], то в графе нету другого остовного дерева и наше дерево уникально. Искать максимальное ребро на пути [math]u[/math] и [math]v[/math] в дереве мы можем при помощи heavy-light декомпозиции.

Асимптотика

Построение минимального остовного дерева работает за [math]O(N \log N)[/math], нахождение максимального ребра за [math]O(\log N)[/math], максимальное количество рёбер вне остова не больше [math]N[/math], каждое ребро проверяется за [math]O(\log N)[/math]. Построение heavy-light декомпозиции работает за [math]O(N)[/math], остов мы построим один раз, heavy-light декомпозицию тоже один раз, каждое ребро мы не больше одного раза проверим на замену, сложность алгоритма [math]O(N \log N)[/math].

См.также

Литература

  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. — Алгоритмы. Построение и анализ.