Редактирование: Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
{{Лемма
 
|about=
 
о разности потоков
 
|statement=
 
Пусть <tex> f </tex> и <tex> g </tex> {{---}} потоки равной величины в сети <tex> G </tex>. Тогда <tex> g </tex> можно представить как сумму <tex> f </tex> и нескольких циклов в остаточной сети <tex> G_f </tex>, т.е. <tex>g = f + \sum_{i} C_i </tex>.
 
|proof=
 
Рассмотрим разность потоков <tex> g - f </tex>, <tex> |g - f| = 0 </tex>. Построим ее [[теорема о декомпозиции|декомпозицию]]. В декомпозиции могут быть только циклы, т.к. наличие путей <tex> s \leadsto t</tex> противоречило бы нулевой величине потока. Таким образом, получили разбиение разности потоков на циклы. Заметим, что <tex> g(u,v) - f(u,v) \leqslant c(u, v) - f(u, v) = c_f(u, v)</tex>, т.е. все циклы принадлежат <tex>G_f</tex>. 
 
}}
 
 
 
{{Лемма
 
{{Лемма
 
|about=
 
|about=
 
об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
 
об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
|statement=
+
|statement=  
Поток <tex> f </tex> {{---}} минимальной стоимости среди потоков своей величины <tex> \iff </tex> в остаточной сети <tex> G_f </tex> нет циклов отрицательной стоимости.
+
Следующие утверждения эквивалентны:
 +
*Поток <tex> f </tex> {{---}} минимальной стоимости.
 +
остаточной сети <tex> G_f </tex> нет циклов отрицательного веса.
 
|proof=  
 
|proof=  
 
*<tex>\Rightarrow </tex>
 
*<tex>\Rightarrow </tex>
От противного. Пусть существует <tex> C </tex> {{---}} цикл отрицательной стоимости в <tex> G_f </tex>,
+
От противного. Пусть существует <tex> C </tex> {{---}} цикл отрицательного веса в <tex> G_f </tex>,
 
<tex> c_m </tex> {{---}} наименьшая остаточная пропускная способность среди рёбер <tex> C </tex>.
 
<tex> c_m </tex> {{---}} наименьшая остаточная пропускная способность среди рёбер <tex> C </tex>.
  
 
Пустим по <tex> C </tex> поток <tex> f_+ = c_m </tex>.  
 
Пустим по <tex> C </tex> поток <tex> f_+ = c_m </tex>.  
Так как сумма стоимостей по циклу отрицательна и поток по каждому ребру одинаков, то <tex> \sum_{(u,v) \in E} p(u,v) \cdot f_+(u,v) < 0</tex>  
+
Так как сумма весов по циклу отрицательна и поток по каждому ребру одинаков, то <tex> \sum_{u,v \in V} p(u,v) \cdot f_+(u,v) < 0</tex>  
  
<tex>\Rightarrow </tex> <tex>\sum_{(u,v) \in E} p(u,v) \cdot (f + f_+)(u,v) < \sum_{(u,v) \in E} p(u,v) \cdot f(u, v)</tex> <tex>\Rightarrow f </tex> {{---}} не минимальный. Противоречие.
+
<tex>\Rightarrow </tex> <tex>\sum_{u,v \in V} p(u,v) \cdot (f + f_+)(u,v) < \sum_{u,v \in V} p(u,v) \cdot f</tex> <tex>\Rightarrow f </tex> {{---}} не минимальный. Противоречие.
 
*<tex>\Leftarrow </tex>
 
*<tex>\Leftarrow </tex>
Рассмотрим поток <tex> f </tex>, такой что в <tex> G_f </tex> нет циклов отрицательной стоимости. Рассмотрим <tex> f' </tex> {{---}} поток величины <tex> |f| </tex> и минимальной стоимости, т. е. <tex> p(f') \leqslant p(f) </tex>. По лемме представим <tex>f' = f + \sum_{i} C_i </tex>. По условию стоимости всех циклов неотрицательны. Получаем <tex> p(f') \geqslant p(f) \Rightarrow p(f') = p(f)</tex>.
+
От противного. Пусть <tex> f </tex> - не минимальной стоимости. Тогда существует <tex> f_m </tex> - поток минимальной стоимости и того же объема.
 +
Существует поток <tex> f_- </tex>, такой что <tex> f_m = f + f_m</tex>.
 +
По сохранению потока <tex> f_- </tex> идёт по пути <tex> P </tex> и верно одно из двух утверждений:
 +
* <tex> P </tex> - из истока в сток.
 +
* <tex> P </tex> - цикл.
 +
Если из истока в сток - изменится объем потока, что противрочит условию.
 +
<tex>\Rightarrow P - цикл</tex>
 +
<tex>\sum_{u,v \in V} p(u,v) \cdot f_-(u,v) < 0 \Rightarrow P</tex> - цикл отрицательного веса. Противоречие.  
 
}}
 
}}
 
== Источники информации ==
 
* Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)
 
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория: Задача о потоке минимальной стоимости]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: