Лемма о рукопожатиях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Неориентированный граф)
Строка 44: Строка 44:
 
В графе с <tex> n </tex> вершинами, степени которых равны <tex> k</tex> (регулярный граф), ровно <tex>\frac{kn}{2} </tex> ребер.
 
В графе с <tex> n </tex> вершинами, степени которых равны <tex> k</tex> (регулярный граф), ровно <tex>\frac{kn}{2} </tex> ребер.
  
''Следствие'' Если степень каждой вершины нечетна и равна <tex> k</tex>, то количество ребер кратно <tex> k </tex>.
+
'''Следствие.''' Если степень каждой вершины нечетна и равна <tex> k</tex>, то количество ребер кратно <tex> k </tex>.
  
 
== Источники ==
 
== Источники ==

Версия 16:07, 10 декабря 2012

Лемма о рукопожатиях

Неориентированный граф

Лемма:
Сумма степеней всех вершин графа (или мультиграфа без петель) — четное число, равное удвоенному числу ребер:
[math] \sum\limits_{v\in V(G)} deg\ v=2 |E(G)|[/math]
Доказательство:
[math]\triangleright[/math]
Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер.
[math]\triangleleft[/math]

Например, для следующего графа выполнено: [math]deg(1)+...+deg(6)=16=2|E|[/math]

Undir grap.png

Следствие 1. В любом графе число вершин нечетной степени четно.

Следствие 2. Число ребер в полном графе [math]\frac{n(n-1)}{2} [/math].


Ориентированный граф

Лемма:
Сумма входящих и исходящих степеней всех вершин ориентированного графа — четное число, равное удвоенному числу ребер:
[math]\sum\limits_{v\in V(G)} deg^{-}\ v \; + \sum\limits_{v\in V(G)} deg^{+}\ v=2 |E(G)| [/math]
Доказательство:
[math]\triangleright[/math]
[math]deg^{-}+deg^{+}=10=2|E|[/math]

Аналогично доказательству леммы о рукопожатиях неориентированном графе.

То есть возьмем пустой граф и будем добавлять в него ребра. При этом каждое добавление ребра увеличивает на единицу сумму входящих и на единицу сумму исходящих степеней. Таким образом, сумма входящих и исходящих степеней всех вершин ориентированного графа четна и равна удвоенному числу ребер.
[math]\triangleleft[/math]

Бесконечный граф

Пример бесконечного графа, в котором не выполняется лемма

В бесконечном графе лемма не работает, даже в случае с конечным числом вершин нечетной степени. Покажем это на примере.

При выборе бесконечного пути из вершины [math] V [/math] (см. рисунок справа) имеем путь, в котором все вершины кроме стартовой имеют четную степень, что противоречит следствию из леммы.

Регулярный граф

В графе с [math] n [/math] вершинами, степени которых равны [math] k[/math] (регулярный граф), ровно [math]\frac{kn}{2} [/math] ребер.

Следствие. Если степень каждой вершины нечетна и равна [math] k[/math], то количество ребер кратно [math] k [/math].

Источники